

БЫСТРОДЕЙСТВУЮЩАЯ СПЕЦИАЛИЗИРОВАННАЯ СБИС ОБРАБОТКИ СИГНАЛОВ ДЛЯ ПРЕЦИЗИОННЫХ НОНИУСНЫХ ЭНКОДЕРОВ

Основные характеристики микросхемы:

- Количество синусно-косинусных канала преобразования 3:
 - мастер-канал,
 - нониус-канал,
 - сегмент-канал.
- Выходной код положения абсолютный;
- Разрешение преобразования не менее 21 бит;
- Время преобразования не более 250 нс;
- Полоса пропускания аналогового тракта на менее 150 кГц;
- Выходные интерфейсы:
 - Инкрементальный,
 - SSI интерфейсы (интегрированный драйвер RS-485);
- Количество элементов в схеме электрической 348 860;
- Тип корпуса 5153.64-1 (металлокерамический, 64 вывода), возможна поставка в бескорпусном исполнении;
- Диапазон рабочих температур 45...125 °С

sales@zntc.ru 1 +7 (499) 720-69-44

Содержание

1.	СТРУ	КТУРНАЯ БЛОК-СХЕМА МИКРОСХЕМЫ	3
2.	УСЛО	ОВНО-ГРАФИЧЕСКОЕ ОБОЗНАЧЕНИЕ	4
3.	ОПИО	САНИЕ ВЫВОДОВ	5
4.	ОПИО	САНИЕ ФУНКЦИОНИРОВАНИЯ МИКРОСХЕМЫ	8
	4.1.	Аналоговый тракт преобразования	8
	4.2.	Источник питания сенсорной системы	. 12
	4.3.	Автоматическая регулировка усиления	. 13
	4.4.	Преобразователь угол-код	14
	4.5.	Регистры настройки и адресное пространство микросхемы	. 15
	4.6.	Интерфейс SPI/SSI	24
	4.7.	Инкрементальный интерфейс	31
	4.8.	Индикация аварийных состояний и выход ошибки	. 32
	4.9.	Блок нониусного преобразования и формирования данных положения	. 33
	4.10.	Многооборотный режим работы	36
	4.11.	Дифференциальный интерфейс SSI	45
	4.12.	Датчик температуры	48
	4.13.	Взаимодействие с внешней ЕЕРКОМ	48
	4.14.	Управление и статусный регистр	48
	4.15.	Аналоговый выход	. 52
	4.16.	Тестовые режимы	53
5.	ТИПО	ОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ	.57
6.	ЭЛЕК	ТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМЫ	.59
7.	ПРЕД	ЕЛЬНО ДОПУСТИМЫЕ ХАРАКТЕРИСТИКИ МИКРОСХЕМЫ	.60
8.	ГАБА	РИТНЫЙ ЧЕРТЕЖ МИКРОСХЕМЫ	.61

1. СТРУКТУРНАЯ БЛОК-СХЕМА МИКРОСХЕМЫ

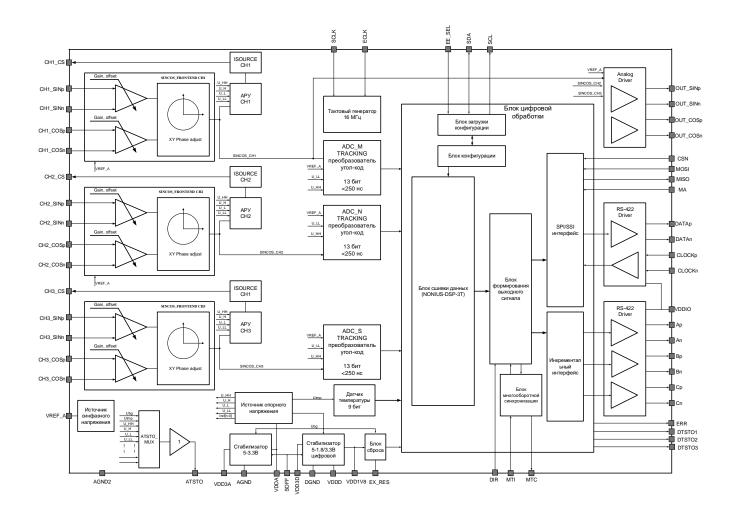


Рисунок 1. Структурная блок-схема микросхемы.

Микросхема предназначена для создания прецизионных датчиков углового положения с многоканальной (2-3) кодовой шкалой, выполненной с использованием нониусного принципа. Микросхема обеспечивает обработку каждого канала с разрешением 13 бит и последующую сшивку данных с каналов с получением выходного разрешение не менее 21 бит. Суммарное разрешение преобразования зависит от количества шкал и их периода.

В качестве сенсорных элементов могут использоваться магниторезистивные элементы, датчики Холла и оптические сенсорные элементы.

sales@zntc.ru 3 +7 (499) 720-69-44

2. УСЛОВНО-ГРАФИЧЕСКОЕ ОБОЗНАЧЕНИЕ

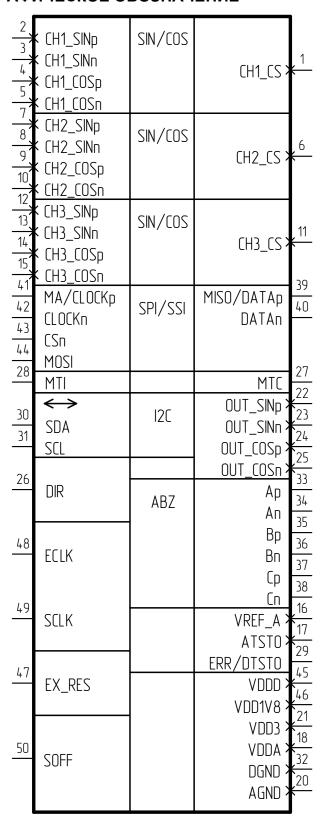


Рисунок 2. Условное графическое обозначение.

sales@zntc.ru 4 +7 (499) 720-69-44

3. ОПИСАНИЕ ВЫВОДОВ

Таблица 1. Описание выводов

TY	TT			таолица т. Описание выводов
Номер вывода корпуса	Номер контактной площадки	Обозначени е вывода	Тип вывода	Функциональное назначение
1	70	DTSTO1	DO-2 ¹⁾	Тестовый цифровой выход 1
2	71	DTSTO2	DO-2	Тестовый цифровой выход 2
3	72	DTSTO3	DO-2	Тестовый цифровой выход 3
4	73	ECLK	DI -PD-ST ²⁾	Вход внешней тактовой частоты
5	74	SCLK	DI -PD-ST	Вход переключения на тактирование от внешней тактовой частоты 0 – от внутреннего генератора, 1 – от входа ECLK
6	75	EX_RES	DI -PD-ST	Вход внешнего сброса 0 – активен, 1 – сброшен
7	76	EE_SEL	DI -PD-ST	Выбор типа внешней памяти EEPROM 0 – 24C02 и аналогичные 1 – 1644PC2T
8	77	SOFF	DI -PD-ST	Отключение внутренних стабилизаторов: 0 – включены; 1 – отключены
10	3	CH3_SINp	Al ³⁾	Вход аналогового тракта, канал сегмента, синус, положительный
11	4	CH3_SINn	Al	Вход аналогового тракта, канал сегмента, синус, отрицательный
12	5	CH3_COSp	Al	Вход аналогового тракта, канал сегмента, косинус, положительный
13	6	CH3_COSn	Al	Вход аналогового тракта, канал сегмента, косинус, отрицательный
15	11	CH2_SINp	Al	Вход аналогового тракта, канал нониуса, синус, положительный
16	12	CH2_SINn	Al	Вход аналогового тракта, канал нониуса, синус, отрицательный
17	13	CH2_COSp	Al	Вход аналогового тракта, канал нониуса, косинус, положительный
18	14	CH2_COSn	Al	Вход аналогового тракта, канал нониуса, косинус, отрицательный
19	19	CH1_SINp	Al	Вход аналогового тракта, канал мастера, синус, положительный
20	20	CH1_SINn	Al	Вход аналогового тракта, канал мастера, синус, отрицательный
21	21	CH1_COSp	Al	Вход аналогового тракта, канал мастера,

sales@zntc.ru 5 +7 (499) 720-69-44

Номер вывода корпуса	Номер контактной площадки	Обозначени е вывода	Тип вывода	Функциональное назначение
				косинус, положительный
22	22	CH1_COSn	Al	Вход аналогового тракта, канал мастера, косинус, отрицательный
23	25	ATSTO	AO ⁴⁾	Тестовый аналоговый выход
25	26	AGND2	Общий	Аналоговая земля 2
26	27	OUT_SINp	AO	Выход SINp
27	28	OUT_SINn	AO	Выход SINn
28	29	OUT_COSp	AO	Выход COSp
29	30	OUT_COSn	AO	Выход COSn
30	31, 32	AGND	Общий	Аналоговая земля 1
31	33	VREF_A	AO	Выход синфазного напряжения
33	34	VDD3A	AO	Выход стабилизатора 3.3В, аналоговый
34	35, 36	VDDA	Питание	Аналоговое питание
35	37	VDDA	Питание	Аналоговое питание
36	38	CH1_CS	AO	Выход питания сенсора канала 1
37	39	CH2_CS	AO	Выход питания сенсора канала 2
38	40	CH3_CS	AO	Выход питания сенсора канала 3
39	41	DIR	DI -PD-ST	Вход выбора условного направления вращения 0 – по часовой стрелке, 1 – против часовой стрелки
40	42	MTC	BIDIR ⁵⁾	Вход 1-Выход многооборотного интерфейса
41	43	MTI	DI -PD-ST	Вход 2 многооборотного интерфейса
42	44	ERR	DO-4 ⁶⁾	Выход сигнала ошибки
43	45	SDA	BIDIR-OD ⁷⁾	Линия SDA внешней I2C EEPROM
44	46	SCL	BIDIR-OD	Выход SCL внешней I2C EEPROM
45	47, 48	DGND	Общий	Цифровая земля
46	49	PSUB	Общий	Цифровая земля (Подложка)
47	50	Ар	RS422_O ⁸⁾	Выход А инкрементального канала, прямой
48	51	An	RS422_O	Выход A инкрементального канала, инверсный
49	52	Вр	RS422_O	Выход В инкрементального канала, прямой
50	53	Bn	RS422_O	Выход В инкрементального канала, инверсный
51	54	Ср	RS422_O	Выход С инкрементального канала, прямой

sales@zntc.ru 6 +7 (499) 720-69-44

Номер вывода корпуса	Номер контактной площадки	Обозначени е вывода	Тип вывода	Функциональное назначение
52	55	Cn	RS422_O	Выход С инкрементального канала, инверсный
53	56	DATAp	RS422_O	Выход данных интерфейса SSI, прямой
54	57	DATAn	RS422_O	Выход данных интерфейса SSI, инверсный
55	58	CLOCKp	RS422_I ⁹⁾	Вход тактовой частоты интерфейса SSI, прямой
56	59	CLOCKn	RS422_I	Вход тактовой частоты интерфейса SSI, инверсный
57	60, 61	VDDIO	Питание	Питание драйвера RS-422
58	62	VDD1V8	AO	Выход стабилизатора
59	63, 64	VDDD	Питание	Цифровое питание
60	65	VDD3D	AO	Выход стабилизатора 3 В
61	66	CSn	DI -ST ¹⁰⁾	Вход выбора интерфейса SPI, активный 0
62	67	MOSI	DI -ST	Вход данных интерфейса SPI
63	68	MA	DI -ST	Вход тактовой частоты интерфейса SPI
64	69	MISO	DO-4	Выход данных интерфейса SPI
9, 14, 24, 32	-	NC	_	Свободный вывод

¹⁾ DO-2 – Цифровой выход с нагрузкой 2 мA;

sales@zntc.ru 7 +7 (499) 720-69-44

²⁾ DI_PD_ST – цифровой вход с подтяжкой к логическому нулю и триггером Шмидта;

³⁾ AI – аналоговый вход; ⁴⁾ AO – аналоговый выход;

⁵⁾ BIDIR – цифровой двунаправленный вывод;

⁶⁾ DO-4 – Цифровой выход с нагрузкой 4 мА;

⁷⁾ BIDIR-OD – цифровой двунаправленный с открытым стоком; 8) RS422_O – выход интерфейса RS-422.

⁹⁾ RS422_I – вход интерфейса RS-422.

¹⁰⁾ DI_ST – цифровой вход с триггером Шмидта.

4. ОПИСАНИЕ ФУНКЦИОНИРОВАНИЯ МИКРОСХЕМЫ

4.1. Аналоговый тракт преобразования

Аналоговый тракт обеспечивает нормализацию сигнала с синусно-косинусных сенсоров, а именно:

- 1) Подстройку диапазона входного сигнала;
- 2) Подстройку усиления каждого канала по отдельности;
- 3) Подстройку отношений амплитуды сигнала синусного к косинусному каналам;
 - 4) Подстройку напряжения смещения сенсора;
 - 5) Подстройку фазового сдвига между синусным и косинусным каналами. Структурная схема аналогового тракта приведена на рисунке 4.1.1.

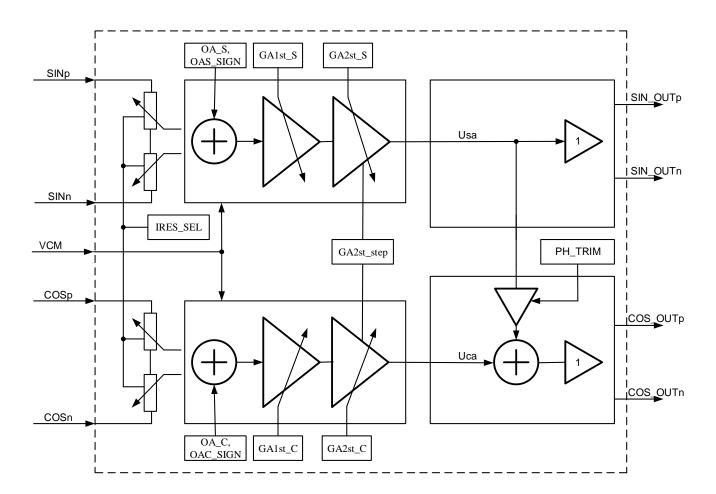


Рисунок 4.1.1 – Структурная схема аналогового тракта

sales@zntc.ru 8 +7 (499) 720-69-44

На входе блока имеется делитель. Структура делителя в привязке к управляющему регистру IRES_SEL[4:0] показана на рисунке 4.1.2.

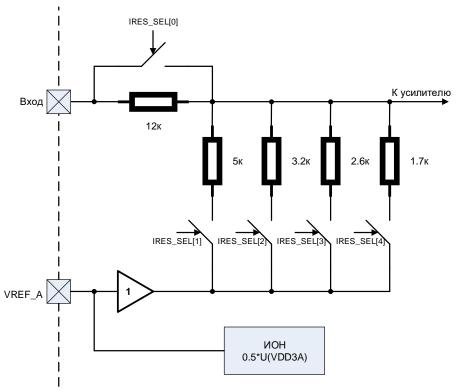


Рисунок 4.1.2 – Структура делителя входного тракта

Внутренний ИОН может быть отключен установкой бита VREFA_OFF в тестовом регистре. В этом случае возможна подача внешнего синфазного напряжения на вход VREF_A микросхемы.

Параметры аналогового тракта приведены в таблице 4.1.1.

Таблица 4.1.1 – Параметры аналогового тракта

Nº	Параметр	Символьное	Значение			Примечание
715	Параметр	обозначение	min	typ	max	Примечание
1	Рекомендованная амплитуда входного напряжения, мВ	Uamp_diff	20	1	2000	Дифференциальное
2	Коэффициент усиления, каскад 1, ед.	Gcoarse	0,6	-	23	Разрядность регистра подстройки 5 бит
3	Коэффициент усиления, каскад 2, ед.	Gfine	1	-	2,32	Разрядность регистра подстройки 9 бит
4	Диапазон подстройки напряжения смещения, мВ	Voff	-	±750	-	Измеряется на выходе при минимальном коэффициенте усиления

sales@zntc.ru 9 +7 (499) 720-69-44

Ma	Поположн	Символьное	Ţ	Вначени	e	Пинисонович
№	Параметр	обозначение	min	typ	max	Примечание
						тракта
5	Шаг подстройки напряжения смещения, мкВ	ΔVoff	-	366	-	Разрядность регистра подстройки 11 бит + знак
6	Дифференциальная нелинейность подстройки напряжения смещения, LSB	ΔVoffr_DNL	-0.5	-	0.5	Относительно всего диапазона подстройки, выраженное в отсчетах
7	Интегральная нелинейность подстройки напряжения смещения, LSB	ΔVoffr_INL	-100	-	100	Относительно всего диапазона подстройки, выраженное в отсчетах
8	Диапазон подстройки фазового сдвига, °	ΔРНг	-	±10.4	-	Между синусным и косинусным каналами относительно идеального фазового сдвига 90°
9	Шаг подстройки фазового сдвига, °			0.0204		Разрядность регистра подстройки 10 бит
10	Дифференциальная нелинейность подстройки фазового сдвига, LSB	ΔPHr_DNL	-0.5	-	0.5	Относительно всего диапазона подстройки, выраженное в отсчетах
11	Интегральная нелинейность подстройки фазового сдвига, LSB	ΔPHr_INL	-20	-	20	Относительно всего диапазона подстройки, выраженное в отсчетах
12	Полоса пропускания тракта, кГц	BWin	250	-	-	По уровню -3дБ
13	Уровень синфазного напряжение на выходе блока, В	Vemout		1.65		

sales@zntc.ru 10 +7 (499) 720-69-44

Магниторезистор подключается к обоим входам тракта и запитывается либо от внутреннего регулируемого источника тока с вывода CHx_CS либо от источника питания VDD3A микросхемы, либо от внешнего питания 5B, рисунок 4.1.2.

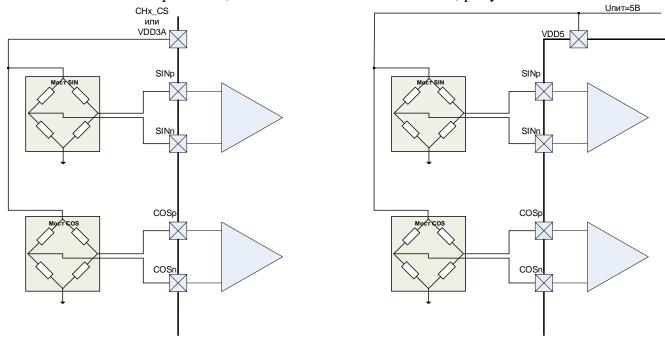


Рисунок 4.1.2 – Два типа подключения сенсора типа магниторезистор

Для использования автоматической регулировки тока питания моста необходимо подключать питание мостов к выходу CHx_CS.

На рисунке 4.1.3 показано подключение сенсоров типа фотодиодов к входному тракту микросхемы. В данном режиме рекомендуется установка регистра IREF_SEL[4:0]=10000.

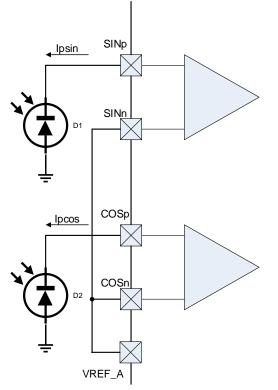


Рисунок 4.1.3 – Подключение сенсоров типа фотодиодов

sales@zntc.ru 11 +7 (499) 720-69-44

50

4.2. Источник питания сенсорной системы

Источник питания сенсорной системы представляет собой регулируемый источник тока, управляемый от системы автоматической регулировки усиления. Источник тока имеет следующие регистры настройки:

- регистр IMAX[1:0] контроля максимального значения тока питания сенсора;
- регистр ICURR[4:0] управления током питания сенсора (в пределах от минимального значения до значения определяемого регистром IMAX[1:0]).

№	Значение регистра IMAX[1:0]	Значение максимального тока
		питания сенсора (I_{IMAX}), м A
1	0	5
2	1	10
3	2	25
1 2 3	0 1 2	5 10 25

Таблица 4.2 Установка максимального тока питания сенсора

Значение тока питания сенсора (в мА) вычисляется по формуле:

$$Is = 0.03125 \cdot I_{IMAX} \cdot (ICURR + 1)$$

На рисунке 4.2.1 приведена схема подключения источника тока к нагрузке.

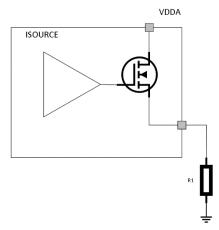


Рисунок 4.2.1 – Схема подключения источника тока к нагрузке

sales@zntc.ru 12 +7 (499) 720-69-44

4.3. Автоматическая регулировка усиления

Регулировка усиления обеспечивается регулировкой тока питания сенсорной системы таким образом, чтобы амплитуда на выходе аналогового тракта преобразования находилась в оптимальном для АЦП диапазоне. Структурная схема АРУ показана на рисунке 4.3.1. АРУ детектирует амплитуду синусно-косинусного сигнала и по результатам сравнения ее с пороговыми значениями инкрементирует, декрементирует или не обновляет значения счетчика СNTA являющегося кодом управления блоком питания сенсора.

При выходе значений амплитуды входного напряжения за нижнюю или верхнюю границы регулировки блок вырабатывает флаги ошибки AAHM и AALM соответственно.

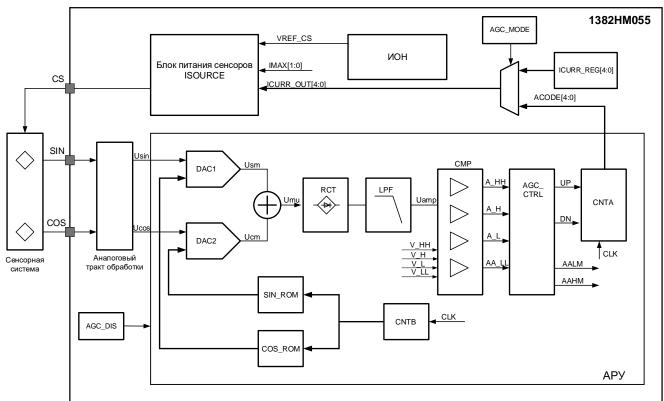


Рисунок 4.3.1 – Структурная схема системы APУ, регулируется независимо для каждого канала

Таблица 4.3.1 Логика работы блока AGC_CONTROL

Nº	AGC_MODE_x	ICURR_OUT_x[4:0]
3	0	Устанавливаются значения из регистра ICURR_REG_x[4:0] EEPROM
4	1	Значения устанавливаются автоматически с блока АРУ

Примечание x - M, N, S

Блоки APУ отключаются регистрами AGC_DIS_х для каждого канала независимо.

sales@zntc.ru 13 +7 (499) 720-69-44

4.4. Преобразователь угол-код

Преобразователь угол-код обеспечивает преобразования синусно-косинусного сигнала с выхода аналогового тракта в цифровой код положения. Максимальная разрядность каждого канала угол-код составляет 13 бит. Разрядность преобразования преобразователей угол-код определяется регистром HRES[3:0] в соответствии с таблицей 4.4.1 и рисунком 1.

Таблица 4.4.1 Выбор разрешения преобразования преобразователей угол-код

№	Bход HRES[3:0]	Разрешение преобразователей Nm, бит	ANGLE_MAX (рисунок 4.4.1)	
1	0	13	8191	
2	1	13	8191	
3	2	12	4095	
4	3	11	2047	
5	4	10	1023	
6	5	9	511	
7	6	8	255	
8	7	7	127	
9	8	6	63	
10	9	5	31	
11	10	4	15	
12	11-15	не используется	-	

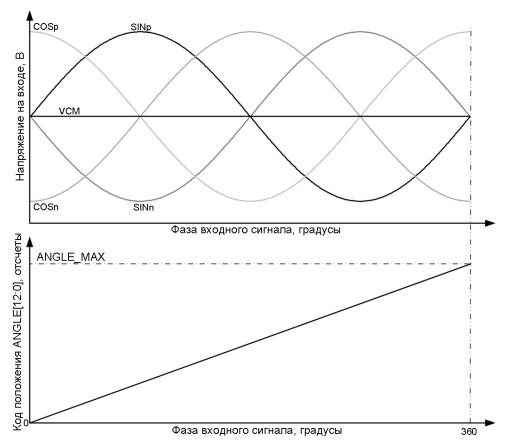


Рисунок 4.4.1 – Характеристика преобразования преобразователя угол-код

sales@zntc.ru 14 +7 (499) 720-69-44

4.5. Регистры настройки и адресное пространство микросхемы

Описание регистров настройки микросхемы приведено в таблице 4.5.1.

Таблица 4.5.1 Описание регистров настройки микросхемы

№	Название	Описание	Значение по умолчанию (десятичное)
1	TR_BG[4:0]	Настройка ИОН	5'd0
2	FREQ[4:0]	Настройка тактовой частоты	5'd0
3	IREFS_TRIM[2:0]	Настройка источника тока датчика	3'd0
4	ATST_SET[4:0]	Настройка тестового аналогового выхода	5'd0
	Нас	тройки аналогового тракта	
5	AGC_CONTROL_M[3:0]	Настройка АРУ мастер-трека	4'd0
6	GA1st_M[4:0]	Грубая подстройка усиления мастертрека	5'd0
7	GA2st_S_M[8:0]	Настройка усиления синусного канала мастер-трека	9'd0
8	GA2st_C_M[8:0]	Настройка усиления косинусного канала мастер-трека	9'd0
9	GA2st_step_M	Выбор шага подстройки усиления второго каскада	0
10	OAS_SIGN_M	Выбор знака подстройки напряжения смещения синусного канала мастертрека	0
11	OAC_SIGN_M	Выбор знака подстройки напряжения смещения косинусного канала мастер-трека	0
12	OA_S_M[10:0]	Подгонка дифференциального смещения синусного канала мастертрека	11'd0
13	OA_C_M[10:0]	Подгонка дифференциального смещения косинусного канала мастер-трека	11'd0
14	PH_TRIM_M[9:0]	Подстройка фазового разбаланса мастер-трека	10'd0
15	IMAX_M[1:0]	Настройка максимального тока питания светодиода мастер-трека	2'd0
16	ICURR_M_REG[4:0]	Установка тока питания светодиода мастер-трека	5'd0

sales@zntc.ru 15 +7 (499) 720-69-44

№	Название	Описание	Значение по умолчанию (десятичное)
1	TR_BG[4:0]	Настройка ИОН	5'd0
2	FREQ[4:0]	Настройка тактовой частоты	5'd0
3	IREFS_TRIM[2:0]	Настройка источника тока датчика	3'd0
4	ATST_SET[4:0]	Настройка тестового аналогового выхода	5'd0
17	AGC_CONTROL_N[3:0]	Настройка АРУ нониус-трека	4'd0
18	GA1st_N[4:0]	Грубая подстройка усиления нониустрека	5'd0
19	GA2st_S_N[8:0]	Настройка усиления синусного канала нониус-трека	9'd0
20	GA2st_C_N[8:0]	Настройка усиления косинусного канала нониус-трека	9'd0
21	GA2st_step_N	Выбор шага подстройки усиления второго каскада	0
22	OAS_SIGN_N	Выбор знака подстройки напряжения смещения синусного канала нониустрека	0
23	OAC_SIGN_N	Выбор знака подстройки напряжения смещения косинусного канала нониус-трека	0
24	OA_S_N[10:0]	Подгонка дифференциального смещения синусного канала нониустрека	11'd0
25	OA_C_N[10:0]	Подгонка дифференциального смещения косинусного канала нониус-трека	11'd0
26	PH_TRIM_N[9:0]	Подстройка фазового разбаланса нониус-трека	10'd0
27	IMAX_N[1:0]	Настройка максимального тока питания светодиода нониус-трека	2'd0
28	ICURR_N_REG[4:0]	Установка тока питания светодиода нониус-трека	5'd0
29	AGC_CONTROL_S[3:0]	Настройка АРУ сегмент-трека	4'd0
30	GA1st_S[4:0]	Грубая подстройка усиления сегмент-трека	3'd0
31	GA2st_S_S[8:0]	Настройка усиления синусного канала сегмент-трека	9'd0
32	GA2st_C_S[8:0]	Настройка усиления косинусного	9'd0

sales@zntc.ru 16 +7 (499) 720-69-44

№	Название	Описание	Значение по умолчанию (десятичное)
1	TR_BG[4:0]	Настройка ИОН	5'd0
2	FREQ[4:0]	Настройка тактовой частоты	5'd0
3	IREFS_TRIM[2:0]	Настройка источника тока датчика	3'd0
4	ATST_SET[4:0]	Настройка тестового аналогового выхода	5'd0
		канала сегмент-трека	
33	GA2st_step_S	Выбор шага подстройки усиления второго каскада	0
34	OAS_SIGN_S	Выбор знака подстройки напряжения смещения синусного канала сегменттрека	0
35	OAC_SIGN_S	Выбор знака подстройки напряжения смещения косинусного канала сегмент-трека	0
36	OA_S_S[10:0]	Подгонка дифференциального смещения синусного канала сегменттрека	11'd0
37	OA_C_S[10:0]	Подгонка дифференциального смещения косинусного канала сегмент-трека	11'd0
38	PH_TRIM_S[9:0]	Подстройка фазового разбаланса сегмент-трека	10'd0
39	IMAX_S[1:0]	Настройка максимального тока питания светодиода сегмент-трека	2'd0
40	ICURR_S_REG[4:0]	Установка тока питания светодиода сегмент-трека	5'd0
41	T_DIS	Отключение встроенного датчика температуры	0 (Вкл.)
42	FR_DIS	Отключение сенсорной системы	0 (Вкл.)
43	SEN_M	Включение источника питания светодиода мастер-трека	0(Выкл)
44	SEN_N	Включение источника питания светодиода нониус-трека	0(Выкл)
45	SEN_S	Включение источника питания светодиода сегмент-трека	0(Выкл)
46	AGCM_DIS	Отключение АРУ мастер-трека	1 (Выкл.)
47	AGCN_DIS	Отключение АРУ нониус-трека	1 (Выкл.)

sales@zntc.ru 17 +7 (499) 720-69-44

№	Название	Описание	Значение по умолчанию (десятичное)
1	TR_BG[4:0]	Настройка ИОН	5'd0
2	FREQ[4:0]	Настройка тактовой частоты	5'd0
3	IREFS_TRIM[2:0]	Настройка источника тока датчика	3'd0
4	ATST_SET[4:0]	Настройка тестового аналогового выхода	5'd0
48	AGCS_DIS	Отключение АРУ сегмент-трека	1 (Выкл.)
49	AGC_MODE_M	Режим работы АРУ мастер-трека	0
50	AGC_MODE_N	Режим работы АРУ нониус-трека	0
51	AGC_MODE_S	Режим работы АРУ сегмент-трека	0
52	IRES_SEL[4:0]	5'd0	
	Н	астройки интерполяторов	
53	VCO_TRIM_M [3:0]	Настройка «мертвой зоны» ГУН АЦП мастер-трека	4'd0
54	C_TRIM_M [2:0]	Настройка крутизны ГУН АЦП мастер-трека	3'd0
55	HRES_M[3:0]	Настройка разрешения АЦП мастертрека	4'd1 (13 бит)
56	TRIM_C_M[3:0]	Настройка апериодического звена мастер-трека	4'd0
57	TRIM_RI_M[1:0]	Настройка апериодического звена мастер-трека	2'd0
58	TRIM_RO_M[1:0]	Настройка апериодического звена мастер-трека	2'd0
59	CU_TR_M	Настройка тока заряда емкости ГУН мастер-трека	0
60	VCO_TRIM_N [3:0]	Настройка «мертвой зоны» ГУН АЦП нониус-трека	4'd0
61	C_TRIM_N [2:0]	Настройка крутизны ГУН АЦП нониус-трека	3'd0
62	HRES_N[3:0]	Настройка разрешения АЦП нониустрека	4'd1 (13 бит)
63	TRIM_C_N[3:0]	Настройка апериодического звена нониус-трека	4'd0
64	TRIM_RI_N[1:0]	Настройка апериодического звена нониус-трека	2'd0
65	TRIM_RO_N[1:0]	Настройка апериодического звена	2'd0

sales@zntc.ru 18 +7 (499) 720-69-44

№	Название	Описание	Значение по умолчанию (десятичное)
1	TR_BG[4:0]	Настройка ИОН	5'd0
2	FREQ[4:0]	Настройка тактовой частоты	5'd0
3	IREFS_TRIM[2:0]	Настройка источника тока датчика	3'd0
4	ATST_SET[4:0]	Настройка тестового аналогового выхода	5'd0
		нониус-трека	
66	CU_TR_N	Настройка тока заряда емкости ГУН нониус-трека	0
67	VCO_TRIM_S [3:0]	Настройка «мертвой зоны» ГУН АЦП сегмент-трека	4'd0
68	C_TRIM_S [2:0]	Настройка крутизны ГУН АЦП сегмент-трека	3'd0
69	HRES_S[3:0]	Настройка разрешения АЦП сегмент-трека	4'd1 (13 бит)
70	TRIM_C_S[3:0]	Настройка апериодического звена сегмент-трека	4'd0
71	TRIM_RI_S[1:0]	Настройка апериодического звена сегмент-трека	2'd0
72	TRIM_RO_S[1:0]	Настройка апериодического звена сегмент-трека	2'd0
73	CU_TR_S	Настройка тока заряда емкости ГУН сегмент-трека	0
74	NCH_DIS	Отключение нониусного канала	0 (Вкл.)
75	SCH_DIS	Отключение сегментного канала	0 (Вкл.)
76	ADC_DIS	Отключение АЦП	0 (Вкл.)
	Настройн	са цифрового сигнального тракта	
77	INT_SEL	Переключение каналов счетчика-интерполятора	0
78	HYST[3:0]	Настройка гистерезиса интерполятора	4'd1
79	LOCK_DIS	Отключение контроля захвата следящей системы	0
80	DIR_SW	Переключение условного направления вращения	0
81	AOFFSET_M[12:0]	Смещение положения мастер-канала	13'd0
82	AOFFSET_N[12:0]	Смещение положения нониусного канала	13'd0

sales@zntc.ru 19 +7 (499) 720-69-44

№	Название	Описание	Значение по умолчанию (десятичное)			
1	TR_BG[4:0]	Настройка ИОН	5'd0			
2	FREQ[4:0]	Настройка тактовой частоты	5'd0			
3	IREFS_TRIM[2:0]					
4	ATST_SET[4:0]	Настройка тестового аналогового выхода	5'd0			
83	AOFFSET_S[12:0]	Смещение положения сегментного канала	13'd0			
84	AOFFSET_HR[24:0]	25'd0				
85	SET_N[2:0]	3'd0				
86	SET_S[2:0]	3'd0				
87	TRACK_MODE	1'b0				
88	POS_RELOAD_ALLOW	1'b1 (Разрешено)				
	Настрой	ка многооборотного интерфейса				
89	MT_ON	Включение многооборотного режима	1'b0 (Выкл.)			
90	MT_MODE[1:0]	Режим работы многооборотного счетчика	2'b0			
91	LEN_MT[2:0]	Настройка длины многооборотного счетчика	3'd0			
92	CHECK_MTSSI_ALLOW	Разрешение периодической проверки многооборотных угловых данных по SSI-интерфейсу	0			
93	MTRELOAD_ALLOW	Разрешить перезагрузку многооборотного счетчика при обнаружении несоответствия с внешним датчиком	0			
94	GRAY_MT	Формат угловых данных многооборотного SSI интерфейса	0 (бинарный)			
95	EXSSI_MALENGTH[4:0]	Настройка длины посылки многооборотного SSI интерфейса	5'd6			
96	EXSSI_ANGLEBITS[3:0]	Настройка количества угловых бит в многооборотном SSI-интерфейсе	4'd2			

sales@zntc.ru 20 +7 (499) 720-69-44

№	Название	Описание	Значение по умолчанию (десятичное)
1	TR_BG[4:0]	Настройка ИОН	5'd0
2	FREQ[4:0]	Настройка тактовой частоты	5'd0
3	IREFS_TRIM[2:0]	Настройка источника тока датчика	3'd0
4	ATST_SET[4:0]	Настройка тестового аналогового выхода	5'd0
97	EXSSI_BITSHIFT[2:0]	Настройка смещения угловых бит в многооборотном SSI	3'd0
		Настройка интерфейсов	
98	IF[3:0]	Настройка фактора интерполяции	0
99	IW Выбор ширины опорного импульса 90/180 градусов		0
100	AB_SD	0 (A, B)	
101	REFCMP[24:0]	Настройка положения нулевой метки инкрементального интерфейса	0
102	SSI_CFG[1:0]	Настройка интерфейса SSI/SPI	2'd0 (Однооборотн.)
103	LEN_ST[3:0]	Настройка длины однооборотных данных интерфейса SSI	4'd8(17)
104	SSI_MODE	Включение режима SSI	0 (Выкл.)
105	SSI_TM[1:0]	Настройка длительности таймаута интерфейса SSI	2'd0 (1мкс)
106	INC_DIS	Сигнал выключения инкрементального интерфейса	1'b0 (Вкл.)
107	INC_D	Вход выбора режима работы модуля RS422_INC 0 – логический 1 – RS-422/485	1'b0
108	SSI422_EN	Включение модуля дифференциального интерфейса SSI	1'b0 (Выкл.)
109	DTSTO_SET[3:0]	Конфигурация цифрового тестового выхода	4'd0
110	DTSTO_DIS	Выключение тестового цифрового выхода	1'b0 (Вкл.)
111	TEMP_CMP_ERR[8:0]	Порог срабатывания системы индикации превышения температуры кристалла	9'd130

sales@zntc.ru 21 +7 (499) 720-69-44

№	Название	Описание	Значение по умолчанию (десятичное)			
1	TR_BG[4:0]	Настройка ИОН	5'd0			
2	FREQ[4:0]	Настройка тактовой частоты	5'd0			
3	IREFS_TRIM[2:0]	Настройка источника тока датчика	3'd0			
4	ATST_SET[4:0]	4:0] Настройка тестового аналогового выхода				
112	ERR_MASK[10:0]	Регистр маскирования ошибки	11'd2047			
113	GRAY	Выбор формата передачи угловых и многооборотных данных по интерфейсу SSI	0 (бинарный)			
114	AO_SET[1:0]	Настройка аналогового выхода	2'd0			
115	AO_DIS	Отключение аналогового выхода	1'b0 (Вкл.)			
		Идентификация БИС				
116	6 CHIP_ID[31:0] Идентификационный номер кристалла		32'd0			
	Управление БИС					
117	OTP_LD_EN	Разрешение загрузки данных из EEPROM в регистры.	0 (запрещено)			

sales@zntc.ru 22 +7 (499) 720-69-44

Адресное пространство микросхемы – непрерывное, 1024 адреса по 16 бит слово, включает следующие основные области памяти:

- 1) Область внешней EEPROM 256x16 бит (соответствует адресам 0-511 EEPROM с организацией по 8 бит слово);
- 2) Область внутренней памяти регистров настройки, копирующей информацию с EEPROM;
- 3) Область регистров данных, представляющих собой финальные и промежуточные данные углового положения;
 - 4) Статусный регистр 16 бит;
- 5) Два тестовый регистра для производственного тестирования микросхемы, адресацией 2x16 бит;
- 6) Оставшаяся свободная область адресов микросхемы, соответствующая адресам EEPROM выше 512, доступна для записи произвольной пользовательской информации (идентификация и т.д.).

Таблица 3.2 Адресное пространство микросхемы

Адреса	Данные	Доступ	Описание
0	CHIP_HARD_ID[15:0]	Чтение	Идентификатор типа кристалла микросхемы
1-256	DATA_EEPROM[15:0]	Чтение/запись	Внешняя EEPROM, область настройки, адреса 0511
257-258	EEPROM CRC	Чтение/запись	Контрольная сумма данных EEPROM
259-515	DATA_REG[15:0]	Чтение/запись	Внутренние регистры микросхемы – образ данных DATA_EEPROM после загрузки
516	STATUS_REG[15:0]	Чтение	Статусный регистр
517	TEST_REG1[15:0]	Чтение/запись	Тестовый регистр 1
518	TEST_REG2[15:0]	Чтение/запись	Тестовый регистр 2
519	3'b0, ANGLE_M [12:0]	Чтение	Данные АЦП канала 1
520	3'b0, ANGLE_N [12:0]	Чтение	Данные АЦП канала 2
521	3'b0, ANGLE_S[12:0]	Чтение	Данные АЦП канала 3
522	ABSPOSITION [15:0]	Чтение	Однооборотные угловые данные
523	ABSPOSITION[24:16]	Чтение	Однооборотные угловые данные
524	MT_DATA[15:0]	Чтение	Данные многооборотного счетчика
525	MT_ERR, MT_READY, MT_DATA[23:16]	Чтение	Данные многооборотного счетчика

sales@zntc.ru 23 +7 (499) 720-69-44

Адреса	Данные	Доступ	Описание
526	ACODE_M[7:0], ACODE_N[7:0]	Чтение	Данные АРУ 1
527	2'b0, ACODE_S[7:0], AALM_M, AALM_N, AALM_S, AAHM_M, AAHM_N, AAHM_S	Чтение	Данные АРУ 2
528	{T_READY, Temper[8:0]}	Чтение	Данные температурного АЦП
529	{DATA_VALID, THREE_PP_EQUAL, ABS_READY, POS_ERR_DETECT, PP_NUM[11:0]}	Чтение	Регистры NONIUS_DSP
530	{DATA_VALID, THREE_PP_EQUAL, ABS_READY, POS_ERR_DETECT, TCNT[11:0]}	Чтение	Регистры NONIUS_DSP
531	{3'b0,OFFSET_DELTA1[12:0]}	Чтение	Регистры NONIUS_DSP
532	{3'b0,OFFSET_DELTA2[12:0]}	Чтение	Регистры NONIUS_DSP
533- 1023	USER_EEPROM[15:0]	Чтение/запись	Внешняя EEPROM, область пользовательских (идентификационных) данных

4.6. Интерфейс SPI/SSI

Блок представляет собой интерфейс, работающий по протоколу SSI/SPI, тип – slave, SPI_MODE=0 для режима SPI.

Блок работает в двух режимах:

- а) режим выдачи угловых данных;
- б) режим настройки.

Переход в режим настройки осуществляется после подачи команды F8A49B по линии MOSI. После поступления данной команды обмен в режиме выдачи угловых данных становится невозможен до перезагрузки микросхемы.

В режиме выдачи угловых данных интерфейс работает только на выход, обеспечивается передача угловых данных положения в независимости от состояния входа MOSI.

Режим выдачи угловых данных

Выбор между режимами SPI и SSI осуществляется битом SSI_MODE.

sales@zntc.ru 24 +7 (499) 720-69-44

Первым передается старший бит.

В режиме выдачи угловых данных используются линии CS, MA, MISO микросхемы. Вывод MOSI не используется, данные передаваемые по нему игнорируются. Временная диаграмма работы микросхемы в режиме выдачи угловых данных приведена на рисунке 7.1, а временные параметры приведены в таблице 7.1.

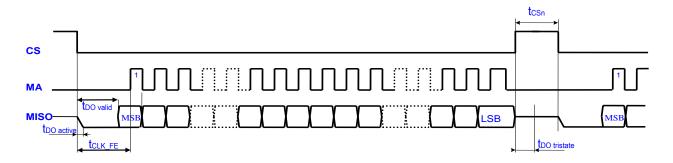


Рисунок 7.1 - Временная диаграмма работы интерфейса SPI в режиме выдачи угловых данных

Таблица 7.1 Временные параметры блока интерфейса SPI

№	Параметр Обозначение Единица измерений		Единица измерений	Значение
1	Максимальное время активации интерфейса	t _{DO active}	нс	100
2	Время загрузки данных с шины в регистр интерфейса	t _{CLK_FE}	нс	750
3	Время готовности первого бита данных	$t_{\mathrm{CLK/2}}$	нс	500
4	Время готовности выходных данных	t _{DO valid}	нс	500
5	Время перехода выхода в третье состояния по окончании загрузки	t _{DO tristate}	нс	100
6	Минимальная длительность сигнала CSn	t_{CSn}	нс	500
7	Максимальная значение частоты на шине CLK	f_{CLK}	МГц	4

sales@zntc.ru 25 +7 (499) 720-69-44

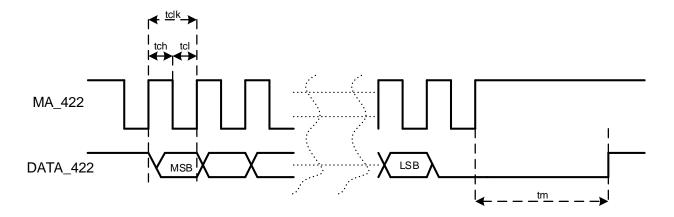


Рисунок 7.2 - Временная диаграмма работы интерфейса SSI/SPI в режиме SSI в режиме

Таблица 7.2 Временные параметры блока интерфейса SSI

No	Попомоти	Обозначение	Единица	Значение			
745	Параметр	Обозначение	измерений	мин.	тип.	макс.	
1	Максимальное значение периода тактового сигнала интерфейса	tclk	нс	250	1	2 x tm	
2	Максимальное значение длительности импульса тактового сигнала интерфейса	tch	нс	125	-	tm	
3	Максимальное значение длительности паузы тактового сигнала интерфейса	tcl	нс	125	-	tm	
4	Время паузы после передачи SSI_TM[1:0]= 00 01 10	tm	МКС		1 2 8 16		

sales@zntc.ru 26 +7 (499) 720-69-44

Таблица 7.3 Режимы работы интерфейса SSI/SPI в режиме выдачи угловых данных

№	SSI_CFG[1:0]	Описание	Длина посылки
1	00	Однооборотный SPI (SPI_MODE=0) режим, на выход передаются однооборотные данные углового положения, сигнал недостаточной амплитуды, сигнал захвата следящей системы, бит индикации ошибки положения	13-25 бит, определяется регистром LEN_ST[3:0]
2	01	Многооборотный режим, на выход передаются однооборотные данные углового положения, многооборотные данные, сигнал недостаточной амплитуды, сигнал захвата следящей системы, бит индикации ошибки положения, бит индикации ошибки многооборотной системы	Определяется регистрами LEN_ST[3:0] и LEN_MT[2:0]
3	10	Режим выдачи чистых данных с преобразователей угол-код	48 бит
4	11	-	

Протокол посылки, выдаваемой через интерфейс SPI/SSI приведен ниже в таблицах.

Таблица 7.4 Формат посылки для однооборотного режима SSI_CFG[1:0]=00

MSB	N-1	N-2	N-3	N-4	N-5		2	1	LSB
N									0
CRC	UNL	EAL	PED	D[n]	D[n-1]		D[2]	D[1]	D[0]
Сигналы ошибки			Данные положения однооборотные						

D[n:0] – код положения

UNL = UNLOCK_M \parallel UNLOCK_N \parallel UNLOCK_S – сигнал ошибки слежения следящих преобразователей;

EAL = AALM_M || AALM_N || AALM_S – бит индикации, что амплитуда сигнала на любом из каналов меньше чем диапазон регулировки АРУ;

 $PED = POS_ERR_DET \parallel \sim DATA_VALID - сигнал индицирующий ошибку при определении кода положения по нониусному алгоритму;$

CRC – бит контроля четности, с дополнением до нечетного.

Данные D[n:0] защелкиваются из регистра ANGLE_CORR[24:0]. Длина передаваемых угловых данных D[n:0] определяется как $8 + (LEN_ST[3:0] + 1)$, причем D[0]= ANGLE_CORR[0].

Таблица 7.5 Формат посылки для многооборотного режима SSI CFG[1:0]=01

MSB	N-1	N-2	N-3	N-4				2	1	LSB
N										0
CRC	UNL	EAL	PED	MT_ERR	MD[m::0]	D[n:0]		D[2]	D[1]	D[0]
					Многооборотные данные	Данные положения однооборотные			ie	

MT_ERR – сигнал индикации ошибки определения положения модулем многооборотного интерфейса

sales@zntc.ru 27 +7 (499) 720-69-44

Данные MD[m:0] защелкиваются из регистра MT_DATA[23:0]. Длина многооборотных данных определяется регистром LEN_MT[2:0] в соответствии с таблицей 7.6, причем MD[0] = MT_DATA[0].

Таблица 7.6 Длина многооборотных данных

№	Регистр LEN_MT[2:0]	Длина многооборотных данных
0	0	2
1	1	4
2	2	8
3	3	12
4	4	16
5	5	20
6	6	24
7	7	24

Таблица 7.7 Формат посылки для однооборотного режима SSI_CFG[1:0]=10

MSB	46-45	44	43	42	41	40-28	27	26-14	13	12-1	LSB
47											0
CRC	0	AALM_M	AALM_N	AALM_S	LOCK_M	ANGLE_M[12:0]	LOCK_N	ANGLE_N[12:0]	LOCK_S	ANGLE_S	S[12:0]
		Ампли	тудный де	тектор	Mae	стер-трек	Ног	ниус-трек	Сег	мент-трег	ζ

В режимах выдачи угловых данных данные угла и данные о числе оборотов могут передаваться в дух форматах: натуральный бинарный код и код Грея. Формат передачи определяется регистром GRAY: 0 — бинарный, 1 — код Грея. Кодом Грея кодируются только угловые данные в режиме SSI (в режиме SPI данные кодом Грея не кодируются). Однооборотные и многооборотные данные кодируются кодом Грея раздельно, кодируется только та часть, которая выдается.

sales@zntc.ru 28 +7 (499) 720-69-44

Режим настройки

В режиме настройки интерфейса SPI используются все 4 линии данных - CS, MA, MISO, MOSI. В режиме настройки обеспечивается доступ ко всем регистрам микросхемы, в том числе и EEPROM, команды приведены в таблице 7.8.

Таблица 7.8 Команды интерфейса OWI

№	Мнемоническое обозначение	Описание команды	CMD[2:0]	ADDR[9:0]
312	команды	Описание команды		ADDR[7.0]
1	READ_ADDR	Чтение по адресу ADDR	001	01023
2	WRITE_ADDR	Запись по адресу ADDR за	010	01023
		исключением адресов имеющих		
		доступ только по чтению		
3	RELOAD_REG	Перегрузка данных из EEPROM	011	0
		в регистры. После получения		
		команды устанавливается бит		
		REG_WR статусного регистра.		
		По окончании перегрузки		
		данный бит сбрасывается.		
4	REG2EEPROM	Перезапись всех значений из	100	0
		регистров в EEPROM. После		
		получения команды		
		устанавливается бит EE_WR		
		статусного регистра. По		
		окончании перезаписи данный		
		бит сбрасывается.		
5	CHIP_RESET	Сброс микросхемы	101	0
6	RECALC_HASH	Пересчет контрольной суммы	110	0
		данных. После получения		
		команды микросхема		
		перерасчитывает контрольную		
		(из области регистров) и по		
		результату сравнения		
		устанавливает бит		
		EE_CRC_FAIL статусного		
		регистра		

sales@zntc.ru 29 +7 (499) 720-69-44

Обмен в режимах работы с адресным пространством микросхемы (READ_ADDR, WRITE_ADDR) производится посылками общей длиной 4 байта, первые 2 из которых содержат команду и адрес, а вторые два байта содержат данные 16 бит, таблица 7.9 и 7.10.

Таблица 7.9 Первые 2 байта обмена данных по интерфейсу SPI в режиме настройки

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	C	MD[2:	0]					ADDI	R[9:0]				

Таблица 7.10 Вторые 2 байта обмена данных по интерфейсу SPI в режиме настройки

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Данные 16 бит														

Команды RELOAD_REG, REG2EEPROM, CHIP_RESET, RECALC_HASH содержат только первые 2 байта команды.

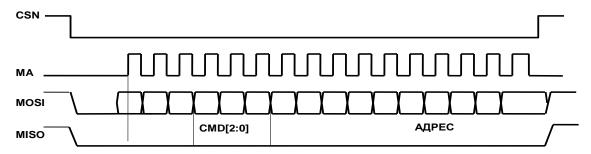


Рисунок 7.3 – Первый цикл обмена через SPI в режиме записи/чтения

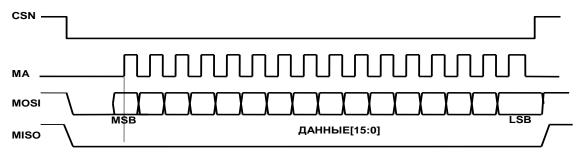


Рисунок 7.4 – Второй цикл обмена через SPI в режиме настройки/записи

sales@zntc.ru 30 +7 (499) 720-69-44

4.7. Инкрементальный интерфейс

Инкрементального интерфейса формирует инкрементальные сигналы двух видов:

- 1) сигналы инкрементального квадратурного интерфейса A/B/INDEX;
- 2) сигналы вида «шаг+направление» STEP/DIR.

Вид сигналов инкрементального интерфейса приведен на рисунке 4.7.1.

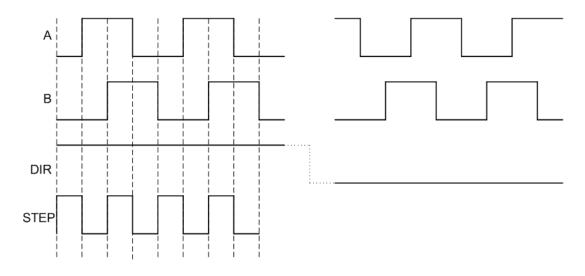


Рисунок 4.7.1 – Диаграмма работы инкрементального интерфейса

За положительное направление вращения принимается состояние, когда квадратура А приходит раньше квадратуры В.

Инкрементальные сигналы обоих типов выводятся на одни и те же выводы. Переключение между типом сигналов осуществляется регистром AB_SD согласно таблице 4.7.1.

Таблица 4.7.1 – Выбор интерфейсов A/B/INDEX и STEP/DIR

AB_SD	Выходной интерфейс
0	A/B/INDEX
1	STEP/DIR

Для квадратурного интерфейса возможна установка различных коэффициентов интерполяции. Выбор коэффициента редукции данных положения приведен в таблице 4.7.2.

sales@zntc.ru 31 +7 (499) 720-69-44

Таблица 4.7.2 – Настройка коэффициентов редукции инкрементального интерфейса

IF[3:0]	Редукция данных положения
4'd0	1
4'd1	2
4'd2	4
4'd3	8
4'd4	16
4'd5	32
4'd6	64
4'd7	128
4'd8	256
4'd9	512
4'd10	1024
4'd11	2048
4'd12	4096
4'd13	8192
4'd14	16384
4'd15	32768

Для формирования нулевого импульса (Выход С микросхемы) используется сигнал компаратора опорного импульса и регистр опорного импульса REFCMP[24:0]. Нулевой импульс срабатывает при равенстве кода положения ANGLE_TURN[24:0] = REFCMP[24:0].

4.8. Индикация аварийных состояний и выход ошибки

Сигнал ошибки формируется на выходе ERR, высокий уровень индицирует наличие ошибки. Источниками сигнала ошибки являются следующие события:

- 1) T_ERR показания датчика температуры превышают значение заданное в регистре TEMP_CMP_ERR[8:0];
- 2) UNLOCK_M преобразователь угол-код мастер-канала вышел из режима слежения, данные могут быть не корректны;
- 3) UNLOCK_N преобразователь угол-код нониус-канала вышел из режима слежения, данные могут быть не корректны;

sales@zntc.ru 32 +7 (499) 720-69-44

- 4) UNLOCK_S преобразователь угол-код сегмент-канала вышел из режима слежения, данные могут быть не корректны;
- 5) AALM_M амплитуда сигнала мастер-канала ниже минимального уровня регулировки APУ;
- 6) AALM_N амплитуда сигнала нониус-канала ниже минимального уровня регулировки APУ;
- 7) AALM_S амплитуда сигнала сегмент-канала ниже минимального уровня регулировки APУ;
- 8) POS_ERR_DETECT ошибка детектирования положения блоком сшивки, данные могут быть не корректны;
- 9) MT_ERR ошибка детектирования данных с многооборотного интерфейса, данные могут быть не корректны;
- 10) EE_READ_FAIL Невозможно считать данные из внешней EEPROM (неполадки с шиной I2C);
 - 11) EE_CRC_FAIL Данные EEPROM не соответствуют ее контрольной сумме.

Любой из источников сигналов ошибки может быть замаскирован путем установки логического нуля соответствующего бита регистра маскирования ERR_MASK[10:0], см. таблицу 4.8.1.

Таблица 4.8.1 Алгоритм формирования сигнала ERR

T_ERR	UNLOCK_M	UNLOCK_N	UNLOCK_S	AALM_M	AALM_N	AALM_S	POS_ERR_DET	MT_ERR	EE_READ_FAIL	EE_CRC_FAIL
&&	&&	&&	&&	&&	&&	&&	&&	&&	&&	&&
	ERR_MASK[10:0]									
[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	ERR									

4.9. Блок нониусного преобразования и формирования данных положения

Блок обеспечивает сшивку данных положения с 2-х или 3-х кодовых шкал с определенным соотношением периодов:

- мастер трек (синусно-косинусный канал 1);
- нониусный трек (синусно-косинусный канал 2);
- трек сегмента (синусно-косинусный канал 3).

В случае 2-х кодовых шкал используется канал 1 и канал 2.

sales@zntc.ru 33 +7 (499) 720-69-44

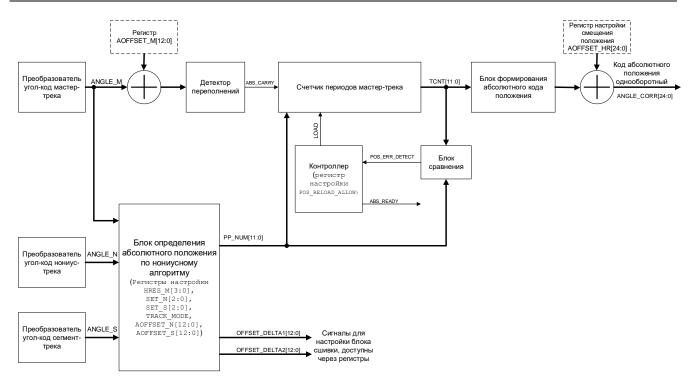


Рисунок 4.9.1 – Упрощенная структурная схема блока нониусного преобразования

Количество периодов мастер-трека программируется в пределах от 1 до 4096. Таким образом общее достижимое теоретическое разрешение составляет 25 бит (13 бит преобразователя угол-код, 12 бит на количество периодов мастер-трека).

При установке входа TRACK_MODE=0 включается режим сшивки с 3-х каналов преобразователей, при TRACK_MODE=1 — двух каналов. Общее разрешение преобразования в зависимости от настроек приведено в таблицах 4.9.1 и 4.9.2.

Таблица 4.9.1 Установка разрешения преобразования для режима сшивки с 3-х каналов, TRACK MODE=0

№	Настройка преобраз	нониусного зователя	Коли	чество пері	Достижимое разрешение	
	SET_S[2:0]	SET_N[2:0]	Мастер	Сегмент	Нониус	
1	2	2	16	12	15	2+2+Nm
2	3	2	32	28	31	2+3+ Nm
3	3	3	64	56	63	3+3+ Nm
4	4	3	128	120	127	3+4+ Nm
5	4	4	256	240	255	4+4+ Nm
6	5	4	512	496	511	4+5+ Nm
7	5	5	1024	992	1023	5+5+ Nm
8	6	5	2048	2016	2047	5+6+ Nm
9	6	6	4096	4032	4095	6+6+ Nm

Nm – разрешение мастер-трека, определяемое таблицей 4.4.1.

sales@zntc.ru 34 +7 (499) 720-69-44

Таблица 4.9.2 Установка разрешения преобразования для режима сшивки с 2-х каналов, TRACK_MODE=1

$N_{\underline{0}}$	Настройка нониусного	Количеств	Достижимое			
	преобразователя					
	SET_N[2:0]	Мастер	Нониус			
1	4	16	15	4+ Nm		
2	5	32	31	5+ Nm		
3	6	64	63	6+ Nm		

Блок имеет следующие регистры для упрощения настройки и доступные по SPI:

- TCNT[11:0] регистр счетчика периодов мастер-трека;
- PP_NUM[11:0] регистр блока определения номера периода мастер-трека (выходной регистр блока нониусной сшивки);
 - OFFSET_DELTA1[12:0] фазовый сдвиг между нониусным и мастер-треком;
 - OFFSET_DELTA2[12:0] фазовый сдвиг между сегментным и мастер-треком
- POS_ERR_DETECT сигнал индикации несоответствия между значением счетчика периодов мастер-трека и выходом блока нониусной сшивки.

Регистры AOFFSET_N[12:0] и AOFFSET_S[12:0] предназначены для подстройки фазового сдвига между нониусным и мастер-треком, и между сегмент и мастер-треком соответственно. Подстройку производят таким образом, чтобы достигалось максимальное значение в регистрах OFFSET_DELTA1[12:0] и OFFSET_DELTA2[12:0] для нониус и сегмент треков соответственно.

Регистр AOFFSET_M[12:0] подстраивают после подстройки регистров AOFFSET_N[12:0] для обеспечения правильного счета счетчика положения: необходимо определить какое значение ANGLE_M[12:0] соответствует моменту изменения номера периода PP_NUM[12:0] с блока нониусной сшивки и записать это значение в регистр AOFFSET_M[12:0].

Блок работает следующим образом. При включении и после установки сигнала захвата на выходе всех следящих преобразователей блоком нониусной сшивки производится определение номера текущего периода мастер-трека (в соответствии с нониусным принципом кодирования). После определения номера периода контроллер выдает сигнал загрузки начального значения в счетчик периодов мастер-трека. Далее счетчик периодов работает от сигнала перехода через нулевое положение мастер-трека инкрементируя или декрементируя свое значение (в зависимости от сигнала DIR). Блок сравнения производит постоянное сравнение значения счетчика периодов мастер-трека и выхода блока нониусной сшивки и при их несоответствии устанавливает сигнал POS_ERR_DETECT. Контроллер после установки сигнала POS_ERR_DETECT или перегружает счетчик периодов мастер-трека новым значением (если установлен регистр POS_ERR_DETECT) или перезагрузка не производится (если регистр POS_ERR_DETECT сброшен). Во втором случае счетчик периодов мастер-трека

sales@zntc.ru 35 +7 (499) 720-69-44

продолжает считать, при этом индицируется ошибка определения положения POS_ERR_DETECT (в том числе и в посылке SPI/SSI), решение о дальнейших действиях принимается пользователем.

Абсолютный код положения может быть сдвинут на любое значение в пределах оборота записью числа в регистр AOFFSET_HR[24:0].

4.10. Многооборотный режим работы

Микросхема содержит встроенный счетчик оборотов с программируемым модулем счета разрядностью 24 бит. Счетчик инкрементирует или декрементирует свое состояние при переходе от максимального кода к нулевому или от нулевого к максимальному соответственно.

Микросхема поддерживает синхронизацию многооборотного счетчика с датчиком положения с помощью сигналов МТС, МТІ. Возможна синхронизация с внешними датчиками, выдающими сигнал по интерфейсу SSI или по двухбитному параллельному коду. Принимающий код внешнего сенсора программируется — как бинарный или как код Грея. Для случая внешнего сенсора с интерфейсом SSI настраивается длина посылки, а также задается маска (для исключения из подсчета статусных бит и бита контроля четности).

Структурная схема блока многооборотного интерфейса приведена на рисунке 4.10.1.

sales@zntc.ru 36 +7 (499) 720-69-44

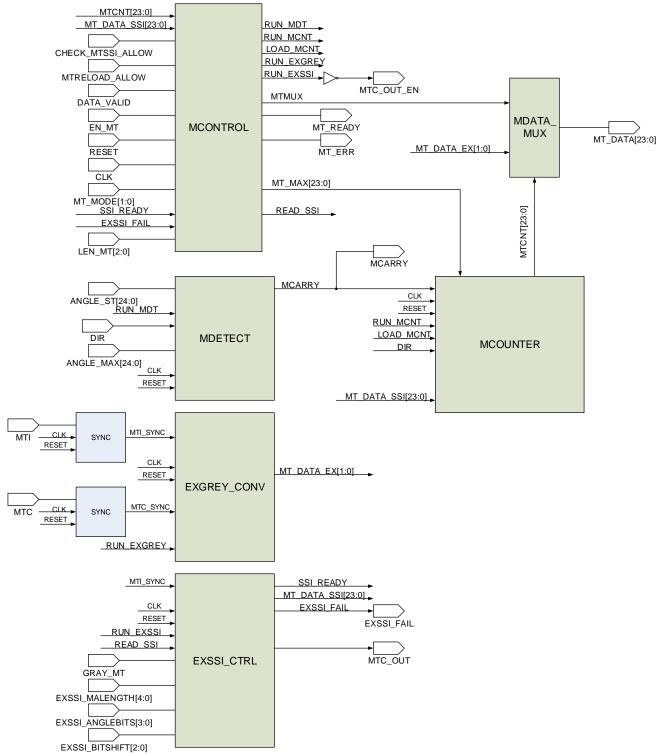


Рисунок 4.10.1 – Структурная схема блока многооборотного интерфейса

Блок MDETECT формирует сигнал MCARRY перехода через 0 однооборотных данных с блока нониусного преобразования ANGLE_ST[24:0].

sales@zntc.ru 37 +7 (499) 720-69-44

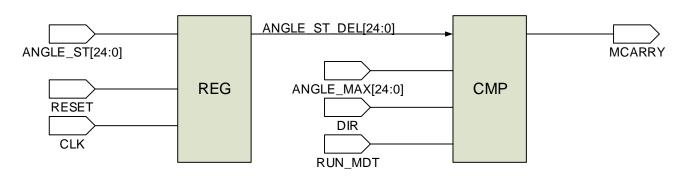


Рисунок 4.10.2 – Структурная схема блока МDETECT

Таблица 4.10.1 Логика работы блока МDETECT

RESET	RUN_MDT	DIR	ANGLE_ST[24:0]	ANGLE_ST_DEL[24:0]	MCARRY
0	X	X	X	X	0
1	0	X	X	X	0
1	1	0	ANGLE_MAX[24:0]	0	1
1	1	0	Остальные	Остальные	0
1	1	1	0	ANGLE_MAX[24:0]	1
1	1	1	Остальные	Остальные	0

Блоки SYNC обеспечивают синхронизацию входных сигналов MTI, MTC с одноименных входных контактных площадок микросхемы (асинхронные сигналы) с тактовой частотой.

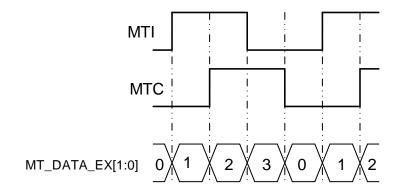


Рисунок 4.10.3 – Диаграмма работы блока EXGREY_CONV

sales@zntc.ru 38 +7 (499) 720-69-44

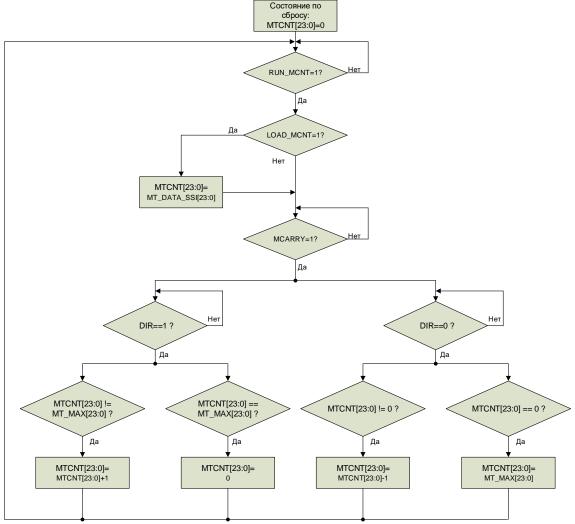


Рисунок 4.10.4 – Диаграмма работы блока MCOUNTER

Блок EXSSI_CTRL обеспечивает считывание абсолютного кода угла с внешнего датчика по интерфейсу SSI. Диаграмма работы блока показана на рисунке 4.10.5.

sales@zntc.ru 39 +7 (499) 720-69-44

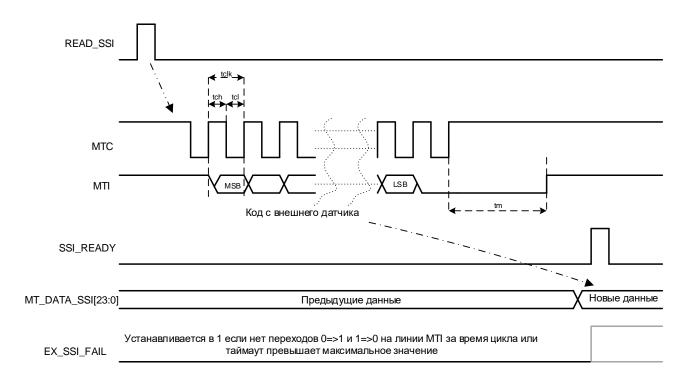


Рисунок 4.10.5 – Диаграмма работы блока EXSSI_CTRL

Таблица 4.10.2 Временные параметры блока EXSSI_CTRL

No	Параметр	Обозначение	Единица	Значение			
			измерений	мин.	тип.	макс.	
1	Значение периода тактового сигнала интерфейса	tclk	нс		1000		
2	Значение длительности импульса тактового сигнала интерфейса	tch	нс		500		
3	Значение длительности паузы тактового сигнала интерфейса	tel	нс		500		
4	Время паузы после передачи	tm	мкс	1		20	

Формат декодируемых угловых данных в посылке определяется битом GRAY_MT: GRAY_MT=0 - натуральный двоичный код, GRAY_MT=0 - код Грея. Кодом Грея должна кодироваться только часть определяемая EXSSI_ANGLEBITS[3:0].

sales@zntc.ru 40 +7 (499) 720-69-44

Длина посылки и количество декодируемых данных определяется тремя регистрами:

EXSSI_MALENGTH[4:0] – количество тактовых импульсов в посылке от 10 до 32;

EXSSI_ANGLEBITS[3:0] - количество разрядов определяющих угловые данные (начиная от младшего + значение EXSSI_BITSHIFT[2:0]);

EXSSI_BITSHIFT[2:0] – сдвиг угловых данных от LSB

Должно выполняться условие: EXSSI_ANGLEBITS[3:0] + EXSSI_BITSHIFT[2:0] ≤ EXSSI_MALENGTH[4:0]

Таблица 4.10.3 Длина угловых данных с внешнего датчика

Nº	Peгистр EXSSI_ANGLEBITS[3:0]	Длина угловых данных (от LSB + значение EXSSI_BITSHIFT[2:0])
0	0	10
1	1	11
2	2	12
3	3	13
4	4	14
5	5	15
6	6	16
7	7	17
8	8	18
9	9	19
10	10	20
11	11	21
12	12	22
13	13	23
14	14	24
15	15	24

sales@zntc.ru 41 +7 (499) 720-69-44

Таблица 4.10.4 Количество тактовых импульсов в посылке

№	Peгистр EXSSI_ MALENGTH [4:0]	Количество тактовых импульсов в посылке
0	0	10
1	1	11
2	2	12
3	3	13
4	4	14
5	5	15
6	6	16
7	7	17
8	8	18
9	9	19
10	10	20
11	11	21
12	12	22
13	13	23
14	14	24
15	15	25
16	16	26
17	17	27
18	18	28
19	19	29
20	20	30
21	21	31
22	22	32

Блок контроллера обеспечивает управление всеми блоками многооборотного интерфейса.

Многооборотный интерфейс работает в трех режимах, определяемых регистром MT_MODE[1:0], таблица 4.10.5.

sales@zntc.ru 42 +7 (499) 720-69-44

Таблица 4.10.5 Режимы работы многооборотного интерфейса (см. рисунок 4.10.6)

MT_MODE[1:0]	Описание	RUN_MDT	RUN_MCNT	RUN_EXGREY	RUN_EXSSI	MTMUX
00	Многооборотный счетчик использует однооборотные данные	1	1	0	0	0
01	Многооборотный счетчик использует однооборотные данные, загрузка начального значения по SSI	1	1	0	1	0
10	Используется двухбитный внешний код Грея с входов МТІ, МТС	0	0	1	0	1
11	Зарезервирован					

Таблица 4.10.6 Логика работы блока MDATA_MUX

№	MTMUX	Выход мультиплексора МТ_DATA[23:0]
0	0	MTCNT[23:0]
1	1	{22'd0,MT_DATA_EX[1:0]}

sales@zntc.ru 43 +7 (499) 720-69-44

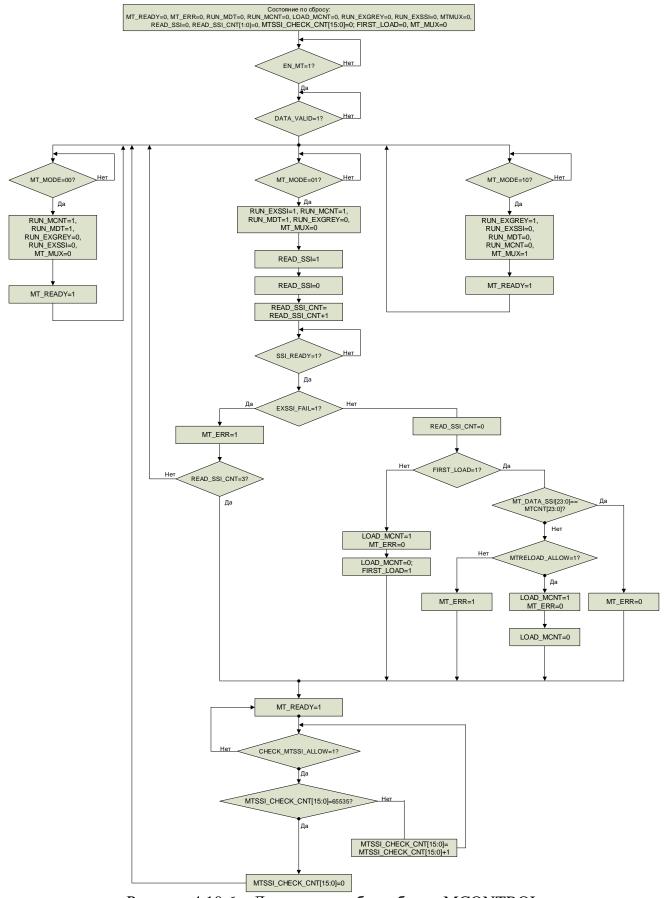


Рисунок 4.10.6 – Диаграмма работы блока MCONTROL

sales@zntc.ru 44 +7 (499) 720-69-44

T (1107	3.6	_	
Таблина 4 10 /	Молупь си	ета многооборот	тиого счетчика
т аолица +.10.7	тиодуль с г	cia miloi occopoi	more creating

No	Регистр LEN_MT[2:0]	Модуль счета многооборотного счетчика МТ_МАХ[23:0]
0	0	3
1	1	15
2	2	255
3	3	4095
4	4	65535
5	5	1048575
6	6	16777215
7	7	16777215

4.11. Дифференциальный интерфейс SSI

Блок дифференциального интерфейса обеспечивает передачу угловых данных по интерфейсу SSI, временная диаграмма приведена на рисунке 8.1, а временные параметры в таблице 8.1

Блок активен при установке сигнала включения EN_422.

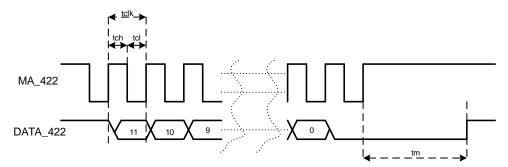


Рисунок 8.1 - Временная диаграмма работы дифференциального интерфейса SSI

sales@zntc.ru 45 +7 (499) 720-69-44

Таблица 8.1 Временные параметры блока дифференциального интерфейса SSI

Ma	Попомот	Osamawawa	Единица	Значение			
№	Параметр	Обозначение	измерений	мин.	тип.	макс.	
1	Максимальное значение периода тактового сигнала интерфейса	tclk	нс	250	-	2 x tm	
2	Максимальное значение длительности импульса тактового сигнала интерфейса	tch	нс	125	-	tm	
3	Максимальное значение длительности паузы тактового сигнала интерфейса	tcl	нс	125	-	tm	
4	Время паузы после передачи SSI_TM[1:0]= 00 01 10	tm	мкс		1 2 8 16		

Таблица 8.2 Режимы работы дифференциального интерфейса SSI

№	SSI_CFG[1:0]	Описание	Длина посылки
1	00	Однооборотный SSI режим, на выход передаются однооборотные данные углового положения, сигнал недостаточной амплитуды, сигнал захвата следящей системы, бит индикации ошибки положения	13-25 бит, определяется регистром LEN_ST[3:0]
2	01	Многооборотный режим, на выход передаются однооборотные данные углового положения, многооборотные данные, сигнал недостаточной амплитуды, сигнал захвата следящей системы, бит индикации ошибки положения, бит индикации ошибки многооборотной системы	Определяется регистрами LEN_ST[3:0] и LEN_MT[2:0]
3	10	Режим выдачи чистых данных с преобразователей угол-код	48 бит
4	11	-	

Протокол посылки, выдаваемой через дифференциальный интерфейс SSI приведен ниже в таблицах.

sales@zntc.ru 46 +7 (499) 720-69-44

$T \subset 0.3 A$		_	TOD	OFOLL OF OO
Таблина Х 3 (1)	ормат посылки для	OIIHOOOOOOTHOFO	пежима 🔨	(F(+1 1·())=()()
т иолици о.э Ф	opmar nochimm gin	одпооборотного	pemina bbi_	_CI O[1.0]-00

MSB	N-1	N-2	N-3	N-4	N-5		2	1	LSB
N									0
CRC	UNL	EAL	PED	D[n]	D[n-1]		D[2]	D[1]	D[0]
Сигналы ошибки			Данные положения однооборотные						

D[n:0] – код положения

UNL = UNLOCK_M \parallel UNLOCK_N \parallel UNLOCK_S – сигнал ошибки слежения следящих преобразователей;

 $EAL = AALM_M \parallel AALM_N \parallel AALM_S -$ бит индикации, что амплитуда сигнала на любом из каналов меньше чем диапазон регулировки APУ;

PED = POS_ERR_DET & ~DATA_VALID – сигнал индицирующий ошибку при определении кода положения по нониусному алгоритму;

CRC – бит контроля четности, с дополнением до НЕЧЕТНОГО.

Данные D[n:0] защелкиваются из регистра ANGLE_CORR[24:0]. Длина передаваемых угловых данных D[n:0] определяется как $8 + (LEN_ST[3:0] + 1)$, причем D[0]= ANGLE_CORR[0].

Таблица 8.4 Формат посылки для многооборотного режима SSI_CFG[1:0]=01

MSB N	N-1	N-2	N-3	N-4				2	1	LSB 0
CRC	UNL	EAL	PED	MT_ERR	MD[m::0]	D[n:0]		D[2]	D[1]	D[0]
					Многооборотные данные Данные положения одно		я одноо	боротнь	ые	

MT_ERR – сигнал индикации ошибки определения положения модулем многооборотного интерфейса

Данные MD[m:0] защелкиваются из регистра MT_DATA[23:0]. Длина многооборотных данных определяется регистром LEN_MT[2:0] в соответствии с таблицей 7.6, причем MD[0] = MT_DATA[0].

Таблица 8.5 Длина многооборотных данных

№	Регистр LEN_MT[2:0]	Длина многооборотных данных, бит
0	0	2
1	1	4
2	2	8
3	3	12
4	4	16
5	5	20
6	6	24

Таблица 8.6 Формат посылки для однооборотного режима SSI_CFG[1:0]=10

		Ампли	тудный де	ый детектор М		астер-трек Ног		ниус-трек	Сеги	мент=тре	К
CRC	0	AALM_M	AALM_N	AALM_S	LOCK_M	ANGLE_M[12:0]	LOCK_N	ANGLE_N[12:0]	LOCK_S	ANGLE_S	S[12:0]
47	45										0
MSB	46-	44	43	42	41	40-28	27	26-14	13	12-1	LSB

sales@zntc.ru 47 +7 (499) 720-69-44

Данные угла и данные о числе оборотов могут передаваться в дух форматах: натуральный бинарный код и код Грея. Формат передачи определяется регистром GRAY: 0 — бинарный, 1 — код Грея. Однооборотные и многооборотные данные кодируются кодом Грея раздельно, кодируется только та часть, которая выдается.

4.12. Датчик температуры

Датчик температуры обеспечивает измерение температуры кристалла с разрешением 9 бит. Формат – беззнаковый.

Код температуры может быть считан по интерфейсу SPI/SSI.

Также блок предусматривает выдачу сигнала аварии на выход ERR при превышении температурой порогового значения записанного в регистре TEMP_CMP_ERR[8:0] (если такая индикация разрешена).

4.13. Взаимодействие с внешней EEPROM

Для хранения настроек используется внешняя микросхема EEPROM с интерфейсом I2C. Минимальный объем EEPROM 2кбит, организация 512х8. Максимальный объем EEPROM адресуемый микросхемой составляет 6024 бит.

При включении питания микросхема прочитывает бит OTP_LD_EN и в зависимости от его состояния или загружает конфигурацию регистров настройки из EEPROM (если бит установлен) или настройки по умолчанию (если сброшен).

В случае если микросхема EEPROM не подключена или не исправна (не отвечает) контроллер три раза дублирует посылку на чтение бита OTP_LD_EN и если ответа нет, то автоматически загружает настройки по умолчанию и устанавливает бит EE_READ_FAIL в статусном регистре.

Поддерживается 2 типа микросхем I2C EEPROM с организацией по 8 бит слово: 24C02, 1644PC2T. Переключение между типами памяти осуществляется входом EE SEL:

 $EE_SEL=GND$ — типа 24C02 и аналогичные $EE_SEL=VDD3D$ - 1644PC2T

4.14. Управление и статусный регистр

Микросхема содержит блок управления, который обеспечивает управление всеми блоками микросхемы и обменом данными с памятью. После включения микросхемы блок управления проверяет состояние бита OTP_LD_EN в микросхеме EEPROM. Если бит установлен, то далее блок управления начинает процедуру перезагрузки данных из микросхемы EEPROM в регистры (кроме полей CHIP_ID,

sales@zntc.ru 48 +7 (499) 720-69-44

OTP_LD_EN). В это время все управляющие сигналы находятся в начальных состояниях, сигнал ELOAD_READY сброшен. После загрузки всех регистров вырабатывается сигнал ELOAD_READY, после чего блок управления устанавливает управляющие сигналы в соответствии с содержимым регистров. Пока идет начальная перегрузка данных из памяти в регистры выполнение каких-либо команд через интерфейс SPI невозможно.

После перегрузки данных из памяти в регистры и установки бита ELOAD_READY блок управления производит проверку контрольной суммы EEPROM: считывает записанную в EEPROM контрольную сумму и производит его сравнение с вычисленным на основе данных в регистрах. При их несовпадении устанавливается бит EE_CRC_FAIL статусного регистра. Контрольная сумма считается только для области настроек, область пользовательских данных не учитываются.

Если микросхема EEPROM не отвечает на передаваемые команды блок управления устанавливает бит EE_READ_FAIL статусного регистра.

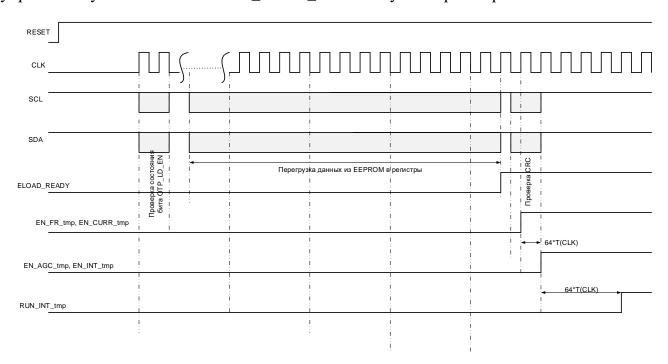


Рисунок 4.14.1 - Временная диаграмма начала работы блока, если установлен бит OTP LD EN

Если бит OTP LD EN не установлен – процедура перезагрузки не начинается – регистры остаются состоянии ПО умолчанию, вырабатывается сигнал ELOAD READY. обеспечивается Таким образом, зашита случае неработоспособности микросхемы EEPROM схема остается с функциональными настройками. В этом случае контрольная сумма EEPROM не проверяется, бит EE READ FAIL сброшен.

Блок управления содержит 16-ти разрядный статусный регистр, доступный по чтению. Структура статусного регистра показана в таблице 4.14.1.

sales@zntc.ru 49 +7 (499) 720-69-44

Таблица 4.14.1 Описание битов статусного регистра

№ бита	Бит статусного регистра	Описание	Значение по умолчанию
0	UNLOCK_M	Сигнал захвата следящей системы мастер-трека	0
1	UNLOCK_N	Сигнал захвата следящей системы нониус-трека	0
2	UNLOCK_S	Сигнал захвата следящей системы сегмент-трека	0
3	AALM_M	Сигнал низкой амплитуды мастер-трека	0
4	AALM_N	Сигнал низкой амплитуды нониус -трека	0
5	AALM_S	Сигнал низкой амплитуды сегмент -трека	0
6	AAHM_M	Сигнал высокой амплитуды мастер-трека	0
7	AAHM_N	Сигнал высокой амплитуды нониус -трека	0
8	AAHM_S	Сигнал высокой амплитуды сегмент -трека	0
9	DIR_w	Индикация направления вращения	0
10	POS_ERR_DETECT	Сигнал детектирования ошибки нониусного преобразования	0
11	THREE_PP_EQUAL	Сигнал индикации правильности последовательного определения номера периода мастер-трека	0
12	MT_ERR	Сигнал ошибки многооборотного интерфейса	0
13	EXSSI_FAIL	Сигнал индикации ошибки чтения многооборотного датчика SSI	0
14	EE_READ_FAIL	Не возможно считать данные из внешней EEPROM	0
15	EE_CRC_FAIL	Данные EEPROM не соответствуют ее контрольной сумме	0

Блок управления формирует сигналы управления в соответствии с рисунком 4.14.1 и таблицей 4.14.2.

sales@zntc.ru 50 +7 (499) 720-69-44

Таблица 4.14.2: Связь между режимами работы и выходными сигналами блока управления

ympa	вления Сигналы	
№	управления	Выходные сигналы
1	RESET=0	Все сброшены кроме EN_PAD=1 EN_PAD_DTSTO=1
2	RESET=1 ELOAD_READY=0	EN_PAD=0 EN_PAD_DTSTO=0 EN_FR_M = EN_FR_N = EN_FR_S = 0 EN_AGC_M = EN_AGC_N = EN_AGC_S = 0 EN_CURR_M = EN_CURR_N = EN_CURR_S=0 EN_INT_M = EN_INT_N = EN_INT_S = 0 RUN_INT_M = RUN_INT_N = RUN_INT_S = 0 EN_TMP = 0 EN_A = 0 EN_INC = 0 EN_422 = 0 EN_DSP=0 EN_MT = 0 EN_AO = 0 EN_VREF=0
3	RESET=1 ELOAD_READY=1	EN_PAD_DTSTO = DTSTO_DIS EN_FR_M = EN_FR_tmp & ~FR_DIS EN_FR_N = EN_FR_tmp & ~FR_DIS & ~NCH_DIS EN_FR_S = EN_FR_tmp & ~FR_DIS & ~SCH_DIS EN_CURR_M = EN_FR_tmp & SEN_M EN_CURR_N = EN_FR_tmp & SEN_N EN_CURR_S = EN_FR_tmp & SEN_S EN_AGC_M = EN_INT_tmp & ~AGCM_DIS EN_AGC_N = EN_INT_tmp & ~AGCS_DIS EN_AGC_S = EN_INT_tmp & ~ADC_DIS EN_INT_M = EN_INT_tmp & ~ADC_DIS EN_INT_N = EN_INT_tmp & ~ADC_DIS & ~NCH_DIS EN_INT_S = EN_INT_tmp & ~ADC_DIS & ~NCH_DIS EN_INT_S = EN_INT_tmp & ~ADC_DIS & ~SCH_DIS RUN_INT_M = RUN_INT_tmp & ~ADC_DIS & ~NCH_DIS EN_INT_N = RUN_INT_tmp & ~ADC_DIS & ~NCH_DIS EN_INT_S = RUN_INT_tmp & ~ADC_DIS & ~NCH_DIS EN_INT_S = RUN_INT_tmp & ~ADC_DIS & ~SCH_DIS EN_TMP = ~T_DIS EN_A = ATST_SET[4:0] EN_INC = ~INC_DIS & ~ADC_DIS EN_422 = SSI422_EN EN_DSP = ~ADC_DIS EN_MT = MT_ON EN_AO = ~AO_DIS EN_VREF = ~VREFA_OFF

sales@zntc.ru 51 +7 (499) 720-69-44

4.15. Аналоговый выход

Аналоговый выход обеспечивает буферизацию и вывод наружу аналоговых сигналов с выхода входного аналогового тракта. В таблице 4.15.1 приведена логика работы аналогового выхода.

Таблица 4.15.1 Логика работы мультиплексора блока

N₂	AO_SET[1:0]	TST_OFF_AO *	SINOUTp	SINOUTn	COSOUTp	COSOUTn	
1	00	0	M_SINp	M_SINn	M_COSp	M_COSn	
2	01	0	N_SINp	N_SINn	N_COSp	N_COSn	
3	10	0	S_SINp	S_SINn	S_COSp	S_COSn	
4	11	0	M_SINp	N_SINp	S_SINp	VREF_A	
5	X	1	VREF_A	VREF_A	VREF_A	VREF_A	
* - б	* - бит тестового регистра						

Параметры аналогового выхода приведены в таблице 4.15.1

Таблица 4.15.2 Технические требования при условиях T = -60...150 °C

No	Папамотп	Символьное		Значение	Применения	
745	Параметр	обозначение	min	typ	max	Примечание
1	Амплитуда сигнала на	Uout_amp	-	1	-	Сопротивление
	выходе, В					нагрузки между
						комплементарными
						выходами RLdiff =
	G 1	**		4 - 7		100 Ом
2	Синфазное выходное напряжение, В	Uout_cm		1,65		
3	Коэффициент усиления	Ka	-	1	-	
4	Полоса пропускания,	Bw	500	-	-	Емкость нагрузки
	кГц					CL=500 пФ
5	Напряжение смещения,	Uoff	-2	0	2	
6	мВ	CD		5		DI 4:65 – 100 Ox
0	Скорость нарастания, В/мкс	SR	-	3	-	RLdiff = 100 Ом CL=25 пФ
7	Выходное	Rout	2	4	8	CL-23 IIV
'	сопротивление, кОм	Kout	2	'1	0	
8	Ток короткого	Isc_1	_	_	40	
0	замыкания на землю, мА	150_1	_	_	40	
9	Ток короткого	Isc_h	_	_	-40	
	замыкания на питание,	150_11		_	-40	
	мА					
L	IVI 1					

Блок аналогового выхода может быть отключен установкой регистра AO_DIS.

sales@zntc.ru 52 +7 (499) 720-69-44

4.16. Тестовые режимы

Микросхема обеспечивает следующие тестовые возможности:

- 1) Контроль внутренних напряжений через тестовый аналоговый выход (вывод ATSTO);
- 2) Тестирование тактового генератора и контроль цифровых сигналов через тестовый цифровой выход (выводы DTSTO1-DTSTO3);
- 3) Тестирование каждого из трех аналоговых трактов преобразования посредством их вывода через синусно-косинусный выход (выводы OUT_SINp, OUT_SINn, OUT_COSp, OUT_COSn) для микросхемы в корпусе;
- 4) Тестирование аналогового тракта и/или преобразователей угол-код на пластине путем использования дополнительных тестовых контактных площадок M_SINp, M_SINn, M_COSp, M_COSn, N_SINp, N_SINn, N_COSp, N_COSn, S_SINp, S_SINn, S_COSp, S_COSn;
- 5) Тестирование тракта «аналоговый вход преобразователь угол-код» путем подачи на входы аналогового тракта соответствующих сигналов и чтением данных преобразователей по SPI в режиме SSI_CFG[1:0]=10;
- 6) Тестирование источников тока (через принудительную установку регистров управления);
 - 7) Тестирование датчика температуры (через интерфейс SPI);
- 8) Тестирование параметров цифровых выходных контактных площадок путем установки бита TEST_PAD_OUT тестового регистра.

Микросхема включает 2 16-ти разрядных регистров выбора тестовых режимов TEST_REG1, TEST_REG2. По сбросу все значения тестовых регистров нулевые. По интерфейсу тестовые регистры доступны для чтения и записи.

Таблица 4.16.1. Описание битов тестового регистра TEST_REG1

№ бита	Бит статусного регистра	Описание	Значение по умолчанию
0	TEST_PAD_OUT	Включение режима тестирования выходных контактных площадок	0
1	TST_INT_M[0]	Тестирования ГУН преобразователя угол-код мастер-трека	0
2	TST_INT_M[1]	Тестирования ГУН преобразователя угол-код мастер-трека	0
3	TST_INT_M[2]	Тестирования ГУН преобразователя угол-код мастер-трека	0
4	TST_INT_M[3]	Тестирования ГУН преобразователя угол-код мастер-трека	0
5	TST_INT_N[0]	Тестирования ГУН преобразователя угол-код нониус-трека	0

sales@zntc.ru 53 +7 (499) 720-69-44

№ бита	Бит статусного регистра	Описание	Значение по умолчанию
6	TST_INT_N[1]	Тестирования ГУН преобразователя угол-код нониус-трека	0
7	TST_INT_N[2]	Тестирования ГУН преобразователя угол-код нониус-трека	0
8	TST_INT_N[3]	Тестирования ГУН преобразователя угол-код нониус-трека	0
9	TST_INT_S[0]	Тестирования ГУН преобразователя угол-код сегмент-трека	0
10	TST_INT_S[1]	Тестирования ГУН преобразователя угол-код сегмент-трека	0
11	TST_INT_S[2]	Тестирования ГУН преобразователя угол-код сегмент-трека	0
12	TST_INT_S[3]	Тестирования ГУН преобразователя угол-код сегмент-трека	0
13	TST_OFF_AO	Включение режима тестирования смещения аналогового выхода	0
14	-	Зарезервировано	0
15	-	Зарезервировано	0

Таблица 4.16.2 Описание битов тестового регистра TEST_REG2

№ бита	Бит статусного регистра	Описание	Значение по умолчанию
0	-	Зарезервировано	0
1	-	Зарезервировано	0
2	-	Зарезервировано	0
3	-	Зарезервировано	0
4	-	Зарезервировано	0
5	-	Зарезервировано	0
6	-	Зарезервировано	0
7	-	Зарезервировано	0
8	-	Зарезервировано	0
9	-	Зарезервировано	0
10	-	Зарезервировано	0
11	-	Зарезервировано	0
12	VREFA_OFF	Отключение источника синфазного напряжения	0
13	-		0
14	-		0
15	-		0

sales@zntc.ru 54 +7 (499) 720-69-44

Тестовый цифровой выход управляется регистром DTSTO_SET[3:0] в соответствие с таблицей 4.16.3. Тестовый цифровой выход отключается установкой регистра DTSTO_DIS.

Таблица 4.16.3 Логика работы тестового цифрового выхода

N	Значение регистра DTSTO_SET[3:0] (десятичные)	Выход DTSTO1	Выход DTSTO2	Выход DTSTO3	К чему относится
1	0	ELOAD_READY	CLK4 ¹⁾	T_RES	Система
2	1	UP_M	DN_M	LCMP_M	Преобразователь угол-код мастер- трека
3	2	UP_N	DN_N	LCMP_N	Преобразователь угол-код нониус- трека
4	3	UP_S	DN_S	LCMP_S	Преобразователь угол-код сегмент-трека
5	4	AALM_M	AAHM_M	LCMP_M	АРУ мастер- трека
6	5	AALM_N	AAHM_N	LCMP_N	АРУ нониус- трека
7	6	AALM_S	AAHM_S	LCMP_S	АРУ сегмент- трека
8	7	STROBE	EE_BUSY	STROBE_OUT	EEPROM
9	8	TCLK	T_START	T_READY	Датчик температуры
10	9	DIR	UP_Mih	DN_Mih	Преобразователь угол-код мастер- трека
11	10	MCARRY	MT_READY	MT_ERR	Многооборотный интерфейс
12	11	ABS_CARRY	POS_ERR_DETECT	THREE_PP_EQUAL	Блок сшивки
13	12	UP_Mih	DN_Mih	LOCK_M	Преобразователь угол-код мастер- трека
14	13	UP_Nih	DN_Nih	LOCK_N	Преобразователь угол-код нониус- трека
15	14	UP_Sih	DN_Sih	LOCK_S	Преобразователь угол-код сегмент-трека
16	15	-	-	-	Зарезервирован

Примечания:

sales@zntc.ru 55 +7 (499) 720-69-44

^{1) –} Частота тактового генератора деленная на 4

Тестовый аналоговый выход управляется регистром ATST_SET[4:0] в соответствие с таблицей 4.16.4.

	Значение регистра		
№	ATST_SET[4:0]	Сигнал	Описание
	(десятичные)		
1	0	-	Блок выключен
2	1	V_HH	Опорное напряжение 1
3	2	V_H	Опорное напряжение 2
4	3	V_L	Опорное напряжение 3
5	4	V_LL	Опорное напряжение 4
6	5	VBGN	Опорное напряжение 5
7	6	VBGA	Опорное напряжение 6
8	7	VTEMP	Опорное напряжение 7
9	8	VBGM	Опорное напряжение 8
10	9	V_AMP_M	Выход амплитудного детектора АРУ мастер-трека
11	10	V_AMP_N	Выход амплитудного детектора АРУ нониус-трека
12	11	V_AMP_S	Выход амплитудного детектора АРУ сегмент-трека
13	12	VREF_A	Синфазное напряжение
14	13	U_VEL_M	Выход ошибки преобразователя угол-код мастер-
			трека
15	14	U_VEL_N	Выход ошибки преобразователя угол-код нониус-
			трека
16	15	U_VEL_S	Выход ошибки преобразователя угол-код сегмент-
			трека
17	16	U_OUTp_M	Выход смесителя АРУ мастер-трека, положительный
18	17	U_OUTn_M	Выход смесителя АРУ мастер-трека, отрицательный
19	18	VRECT_M	Выход выпрямителя АРУ мастер-трека
20	19	U_OUTp_N	Выход смесителя АРУ нониус-трека, положительный
21	20	U_OUTp_S	Выход смесителя АРУ сегмент-трека, положительный
22	21	VRECT_N	Выход выпрямителя АРУ нониус-трека
23	22	VRECT_S	Выход выпрямителя АРУ сегмент-трека
24	23	-	Зарезервировано
25	24	-	Зарезервировано
26	25	-	Зарезервировано
27	26	-	Зарезервировано
28	27	-	Зарезервировано
29	28	-	Зарезервировано
30	29	-	Зарезервировано
31	30	-	Зарезервировано
32	31	-	Зарезервировано

sales@zntc.ru 56 +7 (499) 720-69-44

5. ТИПОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ

На рисунке 5.1 приведена типовая схема включения микросхемы для создания магнитных трехканальных датчиков положения с использованием магниторезистивных сенсоров, интерфейс датчика – дифференциальный SSI RS-485.

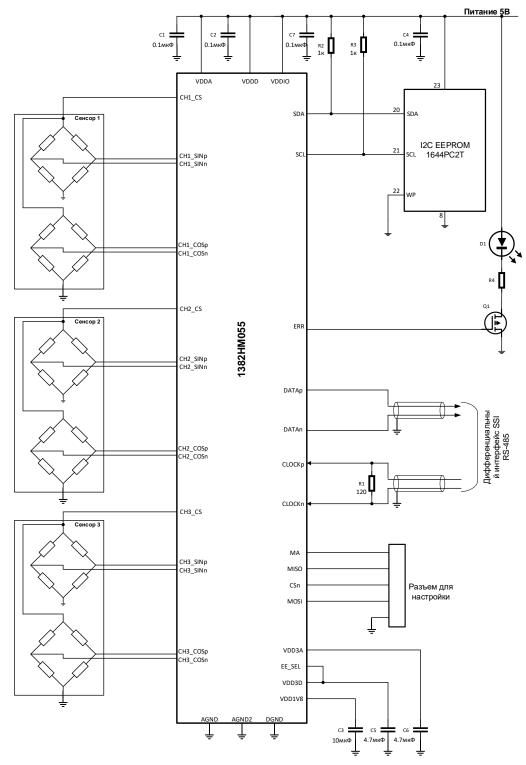


Рисунок 5.1. Типовая схема включения для создания датчиков положения с интерфейсом SSI и магниторезистивными сенсорами

sales@zntc.ru 57 +7 (499) 720-69-44

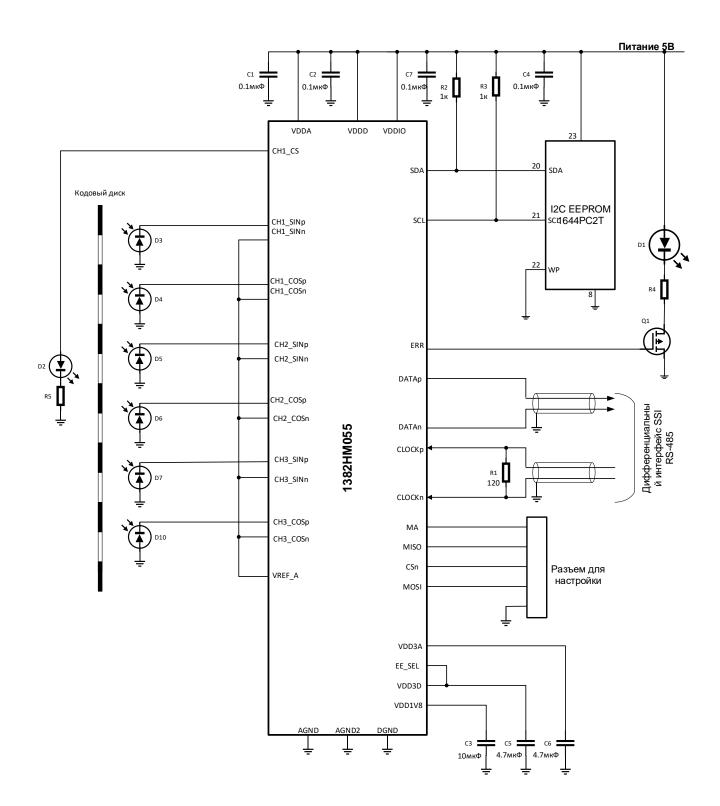


Рисунок 5.2. Типовая схема включения для создания датчиков положения с интерфейсом SSI и оптической сенсорной системой (дискретные фотодатчики)

sales@zntc.ru 58 +7 (499) 720-69-44

6. ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМЫ

Таблица 2. Электрические параметры микросхем при приёмке и поставке.

Наименование параметра,	Буквенное	Норма параметра		П		
единица измерения (режим измерения)	обозначение параметра	не менее	не более	Примечание		
Ток потребления, мА	I_{CC}	-	50	Без нагрузки		
Время преобразования по одному каналу, нс	Tconv	-	250			
Разрешение преобразования одного канала, бит	Res	13	-	Без мультиплексирования		
Разрешение после нониусного преобразования, бит	Res	21	-			
Допустимый выходной ток интегрированного токового драйвера, мА	I_{LED}	0,5	50			
Частота интерфейса SSI, МГц	F_{SSI}	4	-			
Ток короткого замыкания по выводам RS-422, мА	I_{SHT}	-	100			
Входное напряжение низкого уровня цифровых сигналов, В	$ m U_{IL}$	-	0,8			
Входное напряжение высокого уровня цифровых сигналов, В	U _{IH}	2,0	-			
Выходное напряжение низкого уровня, В	U_{OL}	-	0,4			
Выходное напряжение высокого уровня, В	U _{OH}	2,4	-			
Монотонность изменения кода	-	Без с	сбоев			
Погрешность координат смены значений кода, ед.мл.разр.	E_2	-	2	В нормальных условиях		
		-	4	В диапазоне температур		
Допустимое входное напряжение каждого канала, В	U _{IN}	0,75	U _{CC} - 1,5			
Полоса пропускания аналогового тракта по каждому каналу, кГц	$\mathrm{B_{IN}}$	150	-	При минимальном коэффициенте усиления		

sales@zntc.ru 59 +7 (499) 720-69-44

7. ПРЕДЕЛЬНО ДОПУСТИМЫЕ ХАРАКТЕРИСТИКИ МИКРОСХЕМЫ

Таблица 3. Предельно-допустимые и предельные режимы эксплуатации микросхем.

Наименование параметра, единица измерения режим эксплуатации	Буквенное обозначение параметра	Предельно допустимая норма параметра		Предельная норма параметра		Номер пункта
		не менее	не более	не менее	не более	приме- чания
Напряжение питания, В	U_{CC}	4,5	5,5	-0,3	6,5	1
Входное напряжение низкого уровня цифровых сигналов, В	$ m U_{IL}$	0	0,8	-0,3	-	
Входное напряжение высокого уровня цифровых сигналов, В	U _{IH}	2,0	3,6	-	3,6	
Входное напряжение аналоговых каналов, В	$ m U_{IN}$	0,75	U _{CC} - 1,5	-0,3	6,5	
Ток нагрузки цифровых выходов, мА	I_{IO}	-	4	-	6	1,2

Примечания:

- 2 Нагрузка на землю и питание.
- 3 Не допускается одновременное воздействие двух и более предельных режимов.

sales@zntc.ru 60 +7 (499) 720-69-44

¹ Нормы указаны для температуры 25 °C. Нормы на параметры в диапазоне рабочих температур окружающей среды от минус 45 °C до плюс 125 °C должны быть уточнены протоколом согласования с организациями, определяемыми Заказчиком, на этапе разработки технического проекта.

8. ГАБАРИТНЫЙ ЧЕРТЕЖ МИКРОСХЕМЫ

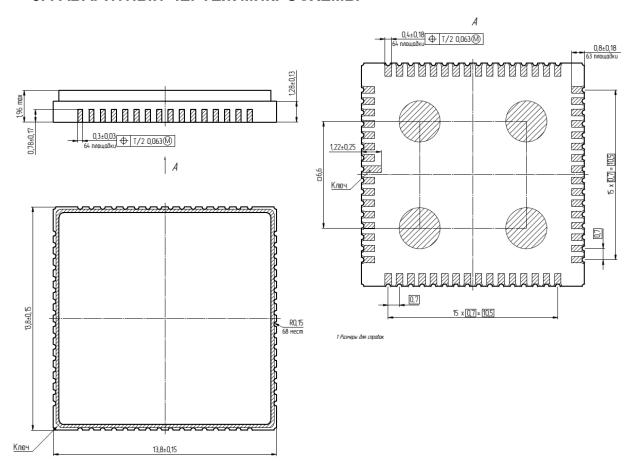


Рисунок 3. Корпус 5153.64-2

sales@zntc.ru 61 +7 (499) 720-69-44