

Программируемый преобразователь ёмкости в напряжение

Назначение

Микросхема предназначена для применения в радиоэлектронной аппаратуре в качестве преобразователя изменения емкостей элемента мостового дифференциального типа в нормированное значение электрического напряжения для измерителей линейного ускорения. Может использоваться в микроэлектромеханических системах (МЭМС), в полупроводниковых емкостных датчиках ускорений.

Принцип действия

Чувствительный элемент сенсора представляет собой две емкости (С1 и С2) включенные между выводами VC1 и VC2 дифференциального входа и средней точкой VC0.

Конструкция сенсора может быть такова, что при наличии физического воздействия на сенсор одна из емкостей (например, С1) увеличивается, а другая (С2) в противофазе к ней — уменьшается.

Микросхема преобразовывает изменение отношения входных емкостей в выходное напряжение на аналоговом выходе U.

Возможно использование недифференциальных датчиков.

Для построения температурно- независимых систем возможно использование встроенного датчика температуры.

Блоки микросхемы содержат программируемые резисторы и конденсаторы для подстройки параметров тракта преобразования. Подстройка осуществляется регистрами микросхемы через последовательный интерфейс SPI.

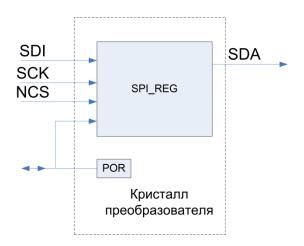
Основные технические параметры

• Диапазон измеряемых емкостей:	1,5÷120 пФ;
• Максимальная разность емкостей сенсора, преобразуемая микросхемой:	50 пФ;
• Диапазон выходного аналогового сигнала:	0.5 ÷ 4.5 B;
• Ток нагрузки по цифровым выходам и выходу компаратора:	не более ±2 мА;
• Нелинейность характеристики преобразования:	не более 5 %;
• Опорное напряжение:	1,14÷1,26 B;
• Рабочая частота измерительных усилителей:	110 кГц;
• Напряжение питания:	+5 B ±10%;
• Ток потребления:	не более 10 мА;
• Диапазон рабочих температур:	-60125°C.

Интерфейсы

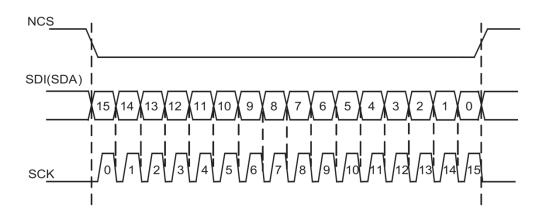
- Аналоговый;
- Цифровой: SPI для программирования параметров тракта преобразования.

sales@zntc.ru 1 +7 (499) 720-69-44



Интерфейс SPI

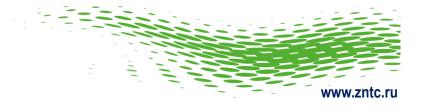
Блок SPI REG служит для ввода, хранения и вывода информации по программной настройке микросхемы. Структурная схема. Использует четыре внешних вывода и один внутренний сигнал POR глобального сброса при начальной установке. Последовательный ввод информации производится по входу SDI, вывод - по SDA. выходу Ввод И вывод производится использование внешней тактовой частоты по входу SCK. Выбор кристалла по входу NCS. Импульс начальной установки регистров формируется блоком POW_RES внутри микросхемы, или может быть задан извне по выводу POR. полярность импульса отрицательная.


Структурная схема блока **SPI**

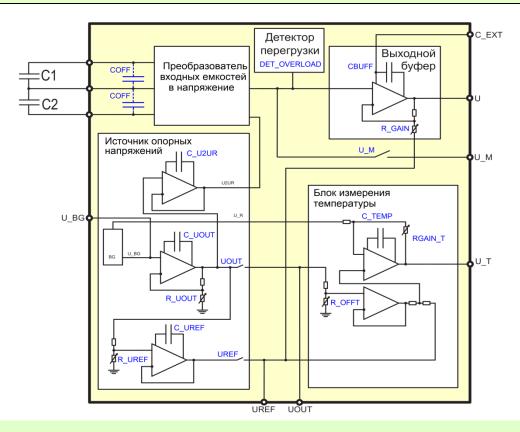
SDI – для ввода информации SDA - для вывода информации NCS – вход выборки кристалла

SCK – тактовый вход

Временная диаграмма обмена информацией блока SPI_REG на кристалле (slave) с внешним блоком (master):



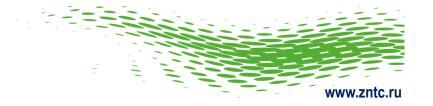
Кодовая посылка, задаваемая от момента, когда NCS = 0, до момента переключения обратно в 1, содержит 16 импульсов SCK. Используется вариант настройки протокола обмена, когда в состоянии ожидания CS = 0 (NCS=1). Активный фронт выборки данных по тактовой шине SCK - передний, по заднему фронту SCK производится установка данных. В протоколе обмена все посылки (команды, адреса) передаются старшим битом вперед.

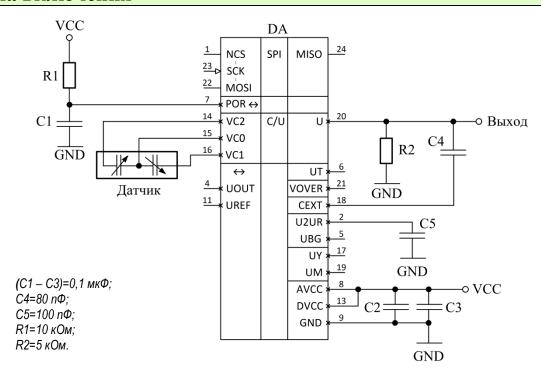

Структура кодовой посылки в блок SPI REG

										- 1														
Финания		Α	дре	ec		ν,		Данные																
Функция		ре	ГИСТ	гра		N	оманд	ца	SDI SDA															
Запись						1	0	0		8 бит входных данных								-	-	-	-			
Чтение	-	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	8 бит выходных данных							

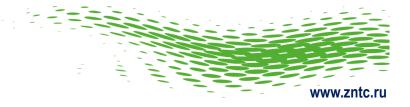
Функциональная схема

Описание регистров


Описание регистров													
Наимено- вание регистра Адрес регистра		Состояние битов по сигналу POR								Описание	Значения		
		7	6	5	4	3	2	1	0				
WORK_SLEEP	00000	-	-	-	-	-	1	-	0	Включение энергосберегающего режима	0 – нормальная работа 1 – режим малого потребления		
		-	-	-	-		-	-	0	Выбор внутреннего или внешнего генератора	0 – внутренний F _G (от генератора) 1 – внешний (по SCK)		
SET 00001		-	-	-	-	-	1	0	-	Выбор внутреннего или внешнего опорного напряжения	0 – внутреннее UREF 1 – внешнее (по выводу UOUT)		
		-	-	-	-	-	0	-	-	Подключение (по KL) вывода Vy1 к контактной площадке	0 – отключен 1 – подключен		
		-	-	-	-	0	1	-	-	Подключение (по KL) вывода VL к контактной площадке	0 – отключен 1 – подключен		
	00001	-	-	-	0	-	1	-	-	Подключение внутреннего программируемого конденсатора COFF	0 – параллельно С2 1 – параллельно С1		
		-	-	0	-	-	ı	-	_	Подключение выхода преобразователя входной емкости в напряжение к выводу U_M	0 – отключен, 1– подключен		
		-	0	-	-	-	-	-	-	Управление коммутацией мультиплексора по выводу SDA- ST	0 – подключение сигнала SDA от блока SPI 1 – подключение внутреннего генератора к выводу SDA		
CINT	00010	-	-	-	1	0	0	0	0	Регулировка емкости С _{INT} (программируемой емкости интегратора)	0000 – 0 пФ 1111 – 62 пФ изменению на 1 бит соответствует шаг 2 пФ (по умолчанию 32пФ)		


www.zntc.ru

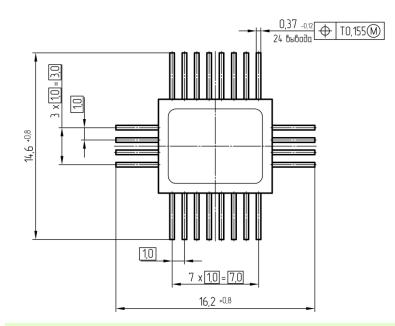
		_		_							- www.zmc.r				
Наимено- вание	Адрес регистра		Состояние битов по сигналу POR							Описание	Значения				
регистра	регистра	7	6	5	4	3	2	1	0						
CDEN	00011	-	-	-	-	-	1	0	0	Регулировка емкости С _{DEN}	000 – 0 пФ 111 – 35 пФ изменению на 1 бит соответствует шаг 5 пФ (по умолчанию 20 пФ)				
CNOM	00100	0	0	0	0	0	0	0	0	Регулировка емкости С NOM	00000000 – 0 пФ 111111111 – 51,2 пФ изменению на 1 бит соответствует шаг 0,2 пФ				
COFF	00101	-	-	0	0	0	0	0	0	Регулировка емкости С оғғ (компенсации разбаланса емкостей С1 и С2)	000000 – 0 пФ 111111 – 3,15 пФ изменению на 1 бит соответствует шаг 0,05 пФ				
ROFF	00110	-	-	0	1	0	1	0	0	Регулировка резистора R _{OFF} подстройки напряжения U ₀	000000 - 0111111 - 0,378 В изменению на 1 бит соответствует шаг 0,006 В (по умолчанию 0,192 В)				
RGAIN_L	00111	0	0	0	0	0	0	0	0	Регулировка резистора подстройки усиления (младшие биты)	00000000 – 0 0011111111 – 105,369 кОм				
RGAIN_H	01000	-	-	-	-	-	-	0	0	Регулировка резистора подстройки усиления (старшие биты)	00 (изменению на 1 бит соответствует шаг 0,103 кОм)				
RGAIN_TL	01001	0	0	0	0	0	0	0	0	Регулировка резистора подстройки усилителя термодатчика (младшие биты)	00000000 — 0 кОм 01111111 — 52,633 кОм				
RGAIN_TH	01010	-	-	-	-	-	-	-	0	Регулировка резистора подстройки усилителя термодатчика (старшие биты)	0 (изменению на 1 бит соответствует шаг 0,103 кОм)				
ROFF_T	01011		0	1	1	0	1	0	0	Подстройка UT	0000000 – 0 кОм 1111111 – 100 кОм изменению на 1 бит соответствует шаг 0,78 кОм (по умолчанию 40,560 кОм)				
ROFF_UREF	01100			1	0	0	0	0	0	Подстройка U _{REF}	000000 – 0 кОм 111111 – 22,3 кОм изменению на 1 бит соответствует шаг 0,348 кОм (по умолчанию 11,136 кОм)				
ROFF_UOUT	01101			1	0	0	0	0	0	Подстройка U ouт	000000 – 0 кОм 111111 – 22,3 кОм изменению на 1 бит соответствует шаг 0,348 кОм (по умолчанию 11,136 кОм)				
FGEN_DEL	01110	-	-	-	-	0	1	0	0	Регулировка коэффициента деления для получения заданных частот F _{GEN} ,	0000 – 240 кГц 1111 – 560 кГц изменению на 1 бит соответствует шаг 20 кГц (по умолчанию 320 кГц)				
R_CR	01111	-	-	-	-	-	0	0	0	Подстройка корректирующей емкости CBUFF в блоке выходной буфер	000 - 0пФ 111- 10,5 пФ изменению на 1 бит соответствует шаг 1,5 пФ				
TC_OIX	01111	-	-	0	0	0	-	-	-	Подстройка корректирующей емкости C_TEMP в блоке измерения температуры	000 – 0 пФ 111xxx - 10,5 пФ изменению на 1 бит соответствует шаг 1,5 пФ				
OVTH	10000	-	-	-	-	-	0	0	0	Регулировка порогов блока детектора перегрузки DET_OVERLOAD	000 – 0,1 В 011 – 0,4 В изменению на 1 бит соответствует шаг 0,1 В 1xx – отключение режима OVERLOAD				
R_CR_ST	10001	-	-	-	-	-	0	0	0	Подстройка корректирующей емкости C_UOUT в каскаде UOUT блока опорных напряжений	000 - 0пФ 111- 10,5 пФ изменению на 1 бит соответствует шаг 1,5пФ				
1_01_01	10001	-	-	0	0	0	-	-	-	Подстройка корректирующей емкости C_UREF в каскаде UREF в блоке опорных напряжений	000-0 пФ 111ххх - 10,5 пФ изменению на 1 бит соответствует шаг 1,5пФ				
R_CR_ST2	10010	-	-	-	_	-	0	0	0	Подстройка корректирующей емкости С U2UR в каскаде U2UR блока опорных напряжений	000 - 0пФ 111 - 10,5 пФ изменению на 1 бит соответствует шаг 1,5пФ				

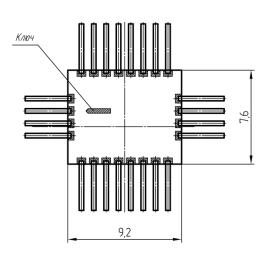

Схема включения

Назначение выводов

№ вывода	Обозна- чение	Наименование вывода
<u>вывода</u> 1	NCS	I Вход выборки кристалла.
2	U2UR	Выход стабилизатора напряжения 4В для питания блока преобразователя
3	NC	Не подключается
4	UOUT	Вход/выход стабилизатора напряжения 4В
5	UBG	Выход опорного напряжения 1,2 В блока bandgap
6	UT	Выход аналогового сигнала термодатчика
7	POR	Вход-выход сигнала Power-on-Reset глобального сброса для начальной установки регистров при включении питания
8	AVCC	Шина питания аналоговых выходных буферов
9	GND	Шина земли (общая)
10	NC	Не подключается
11	UREF	Вход-выход опорного напряжения U _{REF2} = ½ U _{ST} (2B)
12	NC	Не подключается
13	DVCC	Шина питания цифровых модулей
14	VC2	Подключение 1-й обкладки емкости C2 делителя C1/C2
15	VC0	Подключение общей точки емкостного делителя С1/С2
16	VC1	Подключение 1-й обкладки емкости С1 делителя С1/С2
17	UY	Тестовый вывод (не используется)
18	CEXT	Вывод подключения внешней емкости для корректировки шума на выходе
19	UM	Тестовый вывод (не используется)




Nº	Обозна-	Наименование вывода
вывода	чение	паименование вывода
20	U	Выход преобразователя
21	VOVER	Аналоговый выход детектора перегрузки
22	MOSI	Шина ввода данных интерфейса SPI
23	SCK	Шина тактового сигнала интерфейса SPI (вход)
24	MISO	Шина вывода данных интерфейса SPI


Габаритный чертёж

Тип корпуса 5122.24-2

Б

Конкурентные преимущества

- Широкий диапазон рабочих температур;
- Возможность адаптации к датчику, благодаря большому количеству настроек тракта преобразования;
- Отечественный производитель;